These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19964324)

  • 1. The effects of non-linearities on shear stress in periodic flow in axi-symmetric vessels.
    Park CS; Payne SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3944-7. PubMed ID: 19964324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional steady flow through a bifurcation.
    Yung CN; De Witt KJ; Keith TG
    J Biomech Eng; 1990 May; 112(2):189-97. PubMed ID: 2345450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of multi-phase models of blood flow for medium-sized vessels with stenosis.
    Kopernik M; Tokarczyk P
    Acta Bioeng Biomech; 2019; 21(2):63-70. PubMed ID: 31741478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.
    Tang C; Zhu L; Akingba G; Lu XY
    J Biomech; 2015 Jul; 48(10):1922-9. PubMed ID: 25911249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element analysis of nonlinear pulsatile suspension flow dynamics in blood vessels with aneurysm.
    Kumar BV; Naidu KB
    Comput Biol Med; 1995 Jan; 25(1):1-20. PubMed ID: 7600757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model.
    Gijsen FJ; van de Vosse FN; Janssen JD
    J Biomech; 1999 Jun; 32(6):601-8. PubMed ID: 10332624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: A comparative study.
    Tiwari A; Chauhan SS
    Microvasc Res; 2019 May; 123():99-110. PubMed ID: 30639139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent vascular graft.
    Rhee K; Lee SM
    Ann Biomed Eng; 1998; 26(6):955-64. PubMed ID: 9846934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Varying Viscosity on Two-Fluid Model of Blood Flow through Constricted Blood Vessels: A Comparative Study.
    Tiwari A; Chauhan SS
    Cardiovasc Eng Technol; 2019 Mar; 10(1):155-172. PubMed ID: 30302623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for blood flow through a stenotic tube.
    Tandon PN; Rana UV; Kawahara M; Katiyar VK
    Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of arterial wall shear stress, its dependence on vessel diameter and implications for Murray's Law.
    Friedman MH
    Atherosclerosis; 2009 Mar; 203(1):47-8. PubMed ID: 18715565
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of elastic property of the wall on flow characteristics through arterial stenoses.
    Moayeri MS; Zendehbudi GR
    J Biomech; 2003 Apr; 36(4):525-35. PubMed ID: 12600343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.