These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19964344)

  • 1. Neural sensing of electrical activity with stretchable microelectrode arrays.
    Yu Z; Graudejus O; Lacour SP; Wagner S; Morrison B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4210-3. PubMed ID: 19964344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array.
    Yu Z; Graudejus O; Tsay C; Lacour SP; Wagner S; Morrison B
    J Neurotrauma; 2009 Jul; 26(7):1135-45. PubMed ID: 19594385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretchable microelectrode arrays--a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics.
    Yu Z; Tsay C; Lacour SP; Wagner S; Morrison B
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6732-5. PubMed ID: 17959498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity.
    Graudejus O; Morrison B; Goletiani C; Yu Z; Wagner S
    Adv Funct Mater; 2012 Feb; 22(3):640-651. PubMed ID: 24093006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in Hippocampal Network Activity after In Vitro Traumatic Brain Injury.
    Kang WH; Cao W; Graudejus O; Patel TP; Wagner S; Meaney DF; Morrison B
    J Neurotrauma; 2015 Jul; 32(13):1011-9. PubMed ID: 25517970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.
    Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X
    Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1033-44. PubMed ID: 25628144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective stimulation of the spinal cord surface using a stretchable microelectrode array.
    Meacham KW; Guo L; Deweerth SP; Hochman S
    Front Neuroeng; 2011; 4():5. PubMed ID: 21541256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Stretchable Microneedle Electrode Array for Stimulating and Measuring Intramuscular Electromyographic Activity.
    Guvanasen GS; Guo L; Aguilar RJ; Cheek AL; Shafor CS; Rajaraman S; Nichols TR; DeWeerth SP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1440-1452. PubMed ID: 28113946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.
    Liang Guo ; Guvanasen GS; Xi Liu ; Tuthill C; Nichols TR; DeWeerth SP
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):1-10. PubMed ID: 23853274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration microelectrode array for peripheral nerve recording and stimulation.
    Kovacs GT; Storment CW; Rosen JM
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):893-902. PubMed ID: 1473818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment.
    Blake AJ; Pearce TM; Rao NS; Johnson SM; Williams JC
    Lab Chip; 2007 Jul; 7(7):842-9. PubMed ID: 17594002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute in vivo testing of a conformal polymer microelectrode array for multi-region hippocampal recordings.
    Xu H; Hirschberg AW; Scholten K; Berger TW; Song D; Meng E
    J Neural Eng; 2018 Feb; 15(1):016017. PubMed ID: 29044049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A PDMS-based conical-well microelectrode array for surface stimulation and recording of neural tissues.
    Guo L; Meacham KW; Hochman S; DeWeerth SP
    IEEE Trans Biomed Eng; 2010 Oct; 57(10):2485-94. PubMed ID: 20550983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing.
    Qi D; Liu Z; Liu Y; Jiang Y; Leow WR; Pal M; Pan S; Yang H; Wang Y; Zhang X; Yu J; Li B; Yu Z; Wang W; Chen X
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28869690
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.