These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19964372)

  • 1. A univariate model of calcium release in the dyadic cleft of cardiac myocytes.
    Fan J; Yu Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4499-503. PubMed ID: 19964372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency and release flux of calcium sparks in rat cardiac myocytes: a relation to RYR gating.
    Zahradníková A; Valent I; Zahradník I
    J Gen Physiol; 2010 Jul; 136(1):101-16. PubMed ID: 20548054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microscopic mechanism of excitation-contraction coupling in cardiac myocytes].
    Shen JX; Han TZ; Cheng HP
    Sheng Li Ke Xue Jin Zhan; 2004 Oct; 35(4):294-8. PubMed ID: 15727204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.
    Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR
    J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simplified local control model of calcium-induced calcium release in cardiac ventricular myocytes.
    Hinch R; Greenstein JL; Tanskanen AJ; Xu L; Winslow RL
    Biophys J; 2004 Dec; 87(6):3723-36. PubMed ID: 15465866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective modulation of coupled ryanodine receptors during microdomain activation of calcium/calmodulin-dependent kinase II in the dyadic cleft.
    Dries E; Bito V; Lenaerts I; Antoons G; Sipido KR; Macquaide N
    Circ Res; 2013 Nov; 113(11):1242-52. PubMed ID: 24081880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes.
    Shen X; van den Brink J; Hou Y; Colli D; Le C; Kolstad TR; MacQuaide N; Carlson CR; Kekenes-Huskey PM; Edwards AG; Soeller C; Louch WE
    J Physiol; 2019 Jan; 597(2):399-418. PubMed ID: 30412283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium regulation of single ryanodine receptor channel gating analyzed using HMM/MCMC statistical methods.
    Rosales RA; Fill M; Escobar AL
    J Gen Physiol; 2004 May; 123(5):533-53. PubMed ID: 15111644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local control models of cardiac excitation-contraction coupling. A possible role for allosteric interactions between ryanodine receptors.
    Stern MD; Song LS; Cheng H; Sham JS; Yang HT; Boheler KR; Ríos E
    J Gen Physiol; 1999 Mar; 113(3):469-89. PubMed ID: 10051521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium signaling between sarcolemmal calcium channels and ryanodine receptors in heart cells.
    Cheng H; Wang SQ
    Front Biosci; 2002 Sep; 7():d1867-78. PubMed ID: 12161336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ca 2+ leak paradox and rogue ryanodine receptors: SR Ca 2+ efflux theory and practice.
    Sobie EA; Guatimosim S; Gómez-Viquez L; Song LS; Hartmann H; Saleet Jafri M; Lederer WJ
    Prog Biophys Mol Biol; 2006; 90(1-3):172-85. PubMed ID: 16326215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release.
    Greenstein JL; Winslow RL
    Biophys J; 2002 Dec; 83(6):2918-45. PubMed ID: 12496068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic and deterministic approaches to modelling calcium release in cardiac myocytes at different spatial arrangements of ryanodine receptors.
    Iaparov BI; Moskvin AS; Zahradník I; Zahradníková A
    Eur Biophys J; 2019 Sep; 48(6):579-584. PubMed ID: 31236612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle.
    Bondarenko VE; Bett GC; Rasmusson RL
    Am J Physiol Heart Circ Physiol; 2004 Mar; 286(3):H1154-69. PubMed ID: 14630639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoprenaline enhances local Ca2+ release in cardiac myocytes.
    Shen JX
    Acta Pharmacol Sin; 2006 Jul; 27(7):927-32. PubMed ID: 16787578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructure-based Monte Carlo simulation of Ca2+ dynamics evoking cardiac calcium channel inactivation.
    Kawazu T; Murakami S; Adachi-Akahane S; Findlay I; Ait-Haddou R; Kurachi Y; Nomura T
    J Physiol Sci; 2008 Dec; 58(7):471-80. PubMed ID: 18928642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical analysis of the generation and termination of calcium sparks.
    Hinch R
    Biophys J; 2004 Mar; 86(3):1293-307. PubMed ID: 14990462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium homeostasis in a local/global whole cell model of permeabilized ventricular myocytes with a Langevin description of stochastic calcium release.
    Wang X; Weinberg SH; Hao Y; Sobie EA; Smith GD
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(5):H510-23. PubMed ID: 25485896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes.
    Copello JA; Zima AV; Diaz-Sylvester PL; Fill M; Blatter LA
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2129-40. PubMed ID: 17314267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradoxical SR Ca2+ release in guinea-pig cardiac myocytes after beta-adrenergic stimulation revealed by two-photon photolysis of caged Ca2+.
    Lindegger N; Niggli E
    J Physiol; 2005 Jun; 565(Pt 3):801-13. PubMed ID: 15774509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.