These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19964374)

  • 21. Autonomous exoskeleton reduces metabolic cost of walking.
    Mooney LM; Rouse EJ; Herr HM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3065-8. PubMed ID: 25570638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of human walking with powered orthosis for designing practical assistive device.
    Uchiyama Y; Nagai C; Obinata G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4816-9. PubMed ID: 23367005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an orthosis for walking assistance using pneumatic artificial muscle: a quantitative assessment of the effect of assistance.
    Kawamura T; Takanaka K; Nakamura T; Osumi H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650350. PubMed ID: 24187169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and evaluation of Mina: a robotic orthosis for paraplegics.
    Neuhaus PD; Noorden JH; Craig TJ; Torres T; Kirschbaum J; Pratt JE
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975468. PubMed ID: 22275666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An efficient robotic tendon for gait assistance.
    Hollander KW; Ilg R; Sugar TG; Herring D
    J Biomech Eng; 2006 Oct; 128(5):788-91. PubMed ID: 16995768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis.
    Kao PC; Ferris DP
    Gait Posture; 2009 Feb; 29(2):230-6. PubMed ID: 18838269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance.
    John SW; Murakami K; Komatsu M; Adachi S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():387-393. PubMed ID: 28813850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and performance characterization of a hand orthosis prototype to aid activities of daily living in a post-stroke population.
    Gasser BW; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3877-80. PubMed ID: 26737140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducing self-selected human engagement in robotic locomotion training.
    Collins SH; Jackson RW
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650488. PubMed ID: 24187305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential-damper topologies for actuators in rehabilitation robotics.
    Tucker MR; Gassert R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3081-5. PubMed ID: 23366576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of powered gait orthosis on walking in individuals with paraplegia.
    Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fully embedded myoelectric control for a wearable robotic hand orthosis.
    Ryser F; Butzer T; Held JP; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():615-621. PubMed ID: 28813888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion.
    Agrawal SK; Fattah A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):157-65. PubMed ID: 15218930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic actuator control by leg load signal of active AFO for Achilles tendon ruptures.
    Yoshizawa N
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5052-5. PubMed ID: 19964379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.