BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19964389)

  • 1. A new measure to quantify sleepiness using higher order statistical analysis of EEG.
    Abeyratne UR; Vinayak S; Hukins C; Duce B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5543-6. PubMed ID: 19964389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective measure of sleepiness and sleep latency via bispectrum analysis of EEG.
    Swarnkar V; Abeyratne U; Hukins C
    Med Biol Eng Comput; 2010 Dec; 48(12):1203-13. PubMed ID: 21107745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Objective measures of sleepiness and wakefulness: application to the real world?
    Wise MS
    J Clin Neurophysiol; 2006 Feb; 23(1):39-49. PubMed ID: 16514350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizability of Frequency Weighting Curve for Extraction of Spectral Drowsy Component From the EEG Signals Recorded in Eyes-Closed Condition.
    Putilov AA; Donskaya OG; Verevkin EG
    Clin EEG Neurosci; 2017 Jul; 48(4):259-269. PubMed ID: 27733638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of P300 and sleep characteristics in patients with hypersomnia: do P300 latencies, P300 amplitudes, and multiple sleep latency and maintenance of wakefulness tests measure different factors?
    Sangal RB; Sangal JM
    Clin Electroencephalogr; 1997 Jul; 28(3):179-84. PubMed ID: 9241473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correntropy measures to detect daytime sleepiness from EEG signals.
    Melia U; Guaita M; Vallverdú M; Montserrat JM; Vilaseca I; Salamero M; Gaig C; Caminal P; Santamaria J
    Physiol Meas; 2014 Oct; 35(10):2067-83. PubMed ID: 25237837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Slow eye movement analysis in patients with obstructive sleep apnea/hypopnea syndrome].
    Guo J; Xiao Y; Huang R; Zhong X
    Zhonghua Jie He He Hu Xi Za Zhi; 2014 Feb; 37(2):89-94. PubMed ID: 24796587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.
    Ebrahimi F; Mikaeili M; Estrada E; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1151-4. PubMed ID: 19162868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual information measures applied to EEG signals for sleepiness characterization.
    Melia U; Guaita M; Vallverdú M; Embid C; Vilaseca I; Salamero M; Santamaria J
    Med Eng Phys; 2015 Mar; 37(3):297-308. PubMed ID: 25638417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of pre-Parkinson's and Parkinson's disease.
    Christensen JA; Zoetmulder M; Koch H; Frandsen R; Arvastson L; Christensen SR; Jennum P; Sorensen HB
    J Neurosci Methods; 2014 Sep; 235():262-76. PubMed ID: 25088694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of wakefulness test and multiple sleep latency test. Measurement of different abilities in patients with sleep disorders.
    Sangal RB; Thomas L; Mitler MM
    Chest; 1992 Apr; 101(4):898-902. PubMed ID: 1555459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between pupillary unrest index and waking electroencephalogram activity in sleep-deprived healthy adults.
    Regen F; Dorn H; Danker-Hopfe H
    Sleep Med; 2013 Sep; 14(9):902-12. PubMed ID: 23770159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Itakura Distance as a valuable feature for computer-aided classification of sleep stages.
    Ebrahimi F; Mikaili M; Estrada E; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3300-3. PubMed ID: 18002701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic sleep stage classification using ear-EEG.
    Stochholm A; Mikkelsen K; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4751-4754. PubMed ID: 28269332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A continuous evaluation of the awake sleep state using fuzzy reasoning.
    Alvarez-Estévez D; Fernández-Pastoriza JM; Moret-Bonillo V
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5539-42. PubMed ID: 19964388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral composition of NREM sleep in healthy subjects with moderately increased daytime sleepiness.
    Wichniak A; Geisler P; Brunner H; Tracik F; Crönlein T; Friess E; Zulley J
    Clin Neurophysiol; 2003 Aug; 114(8):1549-55. PubMed ID: 12888039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for automatic detection of drowsiness for use in wearable EEG systems.
    Patrick KC; Imtiaz SA; Bowyer S; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3523-3526. PubMed ID: 28269058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of sleep stages in infants: a neuro fuzzy approach.
    Heiss JE; Held CM; Estévez PA; Perez CA; Holzmann CA; Pérez JP
    IEEE Eng Med Biol Mag; 2002; 21(5):147-51. PubMed ID: 12405069
    [No Abstract]   [Full Text] [Related]  

  • 19. An efficient automatic arousals detection algorithm in single channel EEG.
    Ugur TK; Erdamar A
    Comput Methods Programs Biomed; 2019 May; 173():131-138. PubMed ID: 31046987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recorded and Reported Sleepiness: The Association Between Brain Arousal in Resting State and Subjective Daytime Sleepiness.
    Jawinski P; Kittel J; Sander C; Huang J; Spada J; Ulke C; Wirkner K; Hensch T; Hegerl U
    Sleep; 2017 Jul; 40(7):. PubMed ID: 28605521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.