These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19964413)

  • 1. Automated beat onset and peak detection algorithm for field-collected photoplethysmograms.
    Chen L; Reisner AT; Reifman J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5689-92. PubMed ID: 19964413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PPG delineator for real-time ubiquitous applications.
    Farooq U; Jang DG; Park JH; Park SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4582-5. PubMed ID: 21095800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects.
    Selvaraj N; Shelley KH; Silverman DG; Stachenfeld N; Galante N; Florian JP; Mendelson Y; Chon K
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21518656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement.
    Chan GS; Middleton PM; Celler BG; Wang L; Lovell NH
    Physiol Meas; 2007 Apr; 28(4):439-52. PubMed ID: 17395998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers. Part 1: time domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):377-85. PubMed ID: 22051898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Algorithm for Real-Time Pulse Waveform Segmentation and Artifact Detection in Photoplethysmograms.
    Fischer C; Domer B; Wibmer T; Penzel T
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):372-381. PubMed ID: 26780821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
    Jarchi D; Casson AJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of foot finding methods for deriving instantaneous pulse rates from photoplethysmographic signals.
    Hemon MC; Phillips JP
    J Clin Monit Comput; 2016 Apr; 30(2):157-68. PubMed ID: 25902897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion.
    Orphanidou C
    Comput Biol Med; 2017 Feb; 81():45-54. PubMed ID: 28012294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Barney A; Cannesson M
    Comput Methods Programs Biomed; 2024 Sep; 254():108283. PubMed ID: 38901273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eigenvector methods for analysis of human PPG, ECG and EEG signals.
    Ubeyli ED; Cvetkovic D; Cosic I
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3304-7. PubMed ID: 18002702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early detection of spontaneous blood loss using amplitude modulation of Photoplethysmogram.
    Selvaraj N; Scully CG; Shelley KH; Silverman DG; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5499-502. PubMed ID: 22255583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Algorithm for automatic beat detection of cardiovascular pressure signals.
    Beattie ZT
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2594-7. PubMed ID: 19163234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for automatic identification of reliable heart rates calculated from ECG and PPG waveforms.
    Yu C; Liu Z; McKenna T; Reisner AT; Reifman J
    J Am Med Inform Assoc; 2006; 13(3):309-20. PubMed ID: 16501184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory rate detection algorithms by photoplethysmography signal processing.
    Lee EM; Kim NH; Trang NT; Hong JH; Cha EJ; Lee TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1140-3. PubMed ID: 19162865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the morphology of photoplethysmogram peaks to detect changes in posture.
    Linder SP; Wendelken SM; Wei E; McGrath SP
    J Clin Monit Comput; 2006 Jun; 20(3):151-8. PubMed ID: 16688391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of respiratory rhythm from photoplethysmographic signal by adaptive morphological filter.
    Li J; Jin J; Sun W; Guo P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5685-8. PubMed ID: 19964141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of blood pressure variability using independent component analysis of photoplethysmographic signal.
    Abe M; Yoshizawa M; Sugita N; Tanaka A; Chiba S; Yambe T; Nitta S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():348-51. PubMed ID: 19963963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.