These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 19964441)
1. 3-D microfabricated electrodes for targeted deep brain stimulation. Laotaveerungrueng N; Lin CH; McCallum G; Rajgopal S; Steiner CP; Rezai AR; Mehregany M Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6493-6. PubMed ID: 19964441 [TBL] [Abstract][Full Text] [Related]
2. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Wei XF; Grill WM J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238 [TBL] [Abstract][Full Text] [Related]
3. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes. Howell B; Huynh B; Grill WM J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244 [TBL] [Abstract][Full Text] [Related]
4. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue. Gabran SR; Saad JH; Salama MM; Mansour RR Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439 [TBL] [Abstract][Full Text] [Related]
5. Role of electrode design on the volume of tissue activated during deep brain stimulation. Butson CR; McIntyre CC J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937 [TBL] [Abstract][Full Text] [Related]
6. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region. van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096 [TBL] [Abstract][Full Text] [Related]
7. 3D microprobes for deep brain stimulation and recording. Fomani AA; Moradi M; Assaf S; Mansour RR Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1808-11. PubMed ID: 21095938 [TBL] [Abstract][Full Text] [Related]
8. A high-voltage, high-current CMOS pulse generator ASIC for deep brain stimulation. Laotaveerungrueng N; Lahiji RR; Garverick SL; Mehregany M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1519-22. PubMed ID: 21096371 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex. Wang C; Brunton E; Haghgooie S; Cassells K; Lowery A; Rajan R J Neural Eng; 2013 Aug; 10(4):046010. PubMed ID: 23819958 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and initial testing of the μDBS: a novel Deep Brain Stimulation electrode with thousands of individually controllable contacts. Willsie A; Dorval A Biomed Microdevices; 2015; 17(3):9961. PubMed ID: 25981752 [TBL] [Abstract][Full Text] [Related]
11. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording. Lai HY; Liao LD; Lin CT; Hsu JH; He X; Chen YY; Chang JY; Chen HF; Tsang S; Shih YY J Neural Eng; 2012 Jun; 9(3):036001. PubMed ID: 22488106 [TBL] [Abstract][Full Text] [Related]
12. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation. Valente V; Demosthenous A; Bayford R IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):197-207. PubMed ID: 23853142 [TBL] [Abstract][Full Text] [Related]
13. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity. Sabetian P; Popovic MR; Yoo PB J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960 [TBL] [Abstract][Full Text] [Related]
14. Performance optimization of current focusing and virtual electrode strategies in retinal implants. Khalili Moghaddam G; Lovell NH; Wilke RG; Suaning GJ; Dokos S Comput Methods Programs Biomed; 2014 Nov; 117(2):334-42. PubMed ID: 25023532 [TBL] [Abstract][Full Text] [Related]
15. Steering deep brain stimulation fields using a high resolution electrode array. Toader E; Decre MM; Martens HC Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2061-4. PubMed ID: 21096152 [TBL] [Abstract][Full Text] [Related]
16. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation. Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845 [TBL] [Abstract][Full Text] [Related]
17. Functional brain mapping at 9.4T using a new MRI-compatible electrode chronically implanted in rats. Dunn JF; Tuor UI; Kmech J; Young NA; Henderson AK; Jackson JC; Valentine PA; Teskey GC Magn Reson Med; 2009 Jan; 61(1):222-8. PubMed ID: 19097225 [TBL] [Abstract][Full Text] [Related]
18. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface. McIntyre CC; Butson CR; Maks CB; Noecker AM Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants. Golestanirad L; Keil B; Angelone LM; Bonmassar G; Mareyam A; Wald LL Magn Reson Med; 2017 Apr; 77(4):1701-1712. PubMed ID: 27059266 [TBL] [Abstract][Full Text] [Related]
20. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation. Huang WC; Lo YC; Chu CY; Lai HY; Chen YY; Chen SY Biomaterials; 2017 Apr; 122():141-153. PubMed ID: 28119154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]