These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19964461)

  • 1. A simple filter circuit for denoising biomechanical impact signals.
    Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6938-41. PubMed ID: 19964461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STFT-based denoising of biomechanical impact signals.
    Hon TK; Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4036-9. PubMed ID: 21097287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the second derivative of kinematic impact signals using fractional fourier domain filtering.
    Georgakis A; Subramaniam SR
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):996-1004. PubMed ID: 19272899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional fourier-based filter for denoising elastograms.
    Subramaniam SR; Hon TK; Georgakis A; Papadakis G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4028-31. PubMed ID: 21097285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic algorithm for filtering kinematic signals with impacts in the Wigner representation.
    Georgakis A; Stergioulas LK; Giakas G
    Med Biol Eng Comput; 2002 Nov; 40(6):625-33. PubMed ID: 12507312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic segment filtering procedure for processing non-stationary signals.
    Davis DJ; Challis JH
    J Biomech; 2020 Mar; 101():109619. PubMed ID: 31952818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast time-varying linear filters for suppression of baseline drift in electrocardiographic signals.
    Kozumplík J; Provazník I
    Biomed Eng Online; 2017 Feb; 16(1):24. PubMed ID: 28173809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.
    Chen HP; Liao HJ; Huang CM; Wang SC; Yu SN
    J Chromatogr A; 2010 Apr; 1217(17):2804-11. PubMed ID: 20227706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple algorithm for a digital three-pole Butterworth filter of arbitrary cut-off frequency: application to digital electroencephalography.
    Alarcon G; Guy CN; Binnie CD
    J Neurosci Methods; 2000 Dec; 104(1):35-44. PubMed ID: 11163409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocardiogram signals de-noising using lifting-based discrete wavelet transform.
    Erçelebi E
    Comput Biol Med; 2004 Sep; 34(6):479-93. PubMed ID: 15265720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of digital filtering on peak acceleration and force measurements for artistic gymnastics skills.
    Campbell RA; Bradshaw EJ; Ball N; Hunter A; Spratford W
    J Sports Sci; 2020 Aug; 38(16):1859-1868. PubMed ID: 32329647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved accuracy of biomechanical motion data obtained during impacts using a time-frequency low-pass filter.
    Augustus S; Amca AM; Hudson PE; Smith N
    J Biomech; 2020 Mar; 101():109639. PubMed ID: 31983403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of mother wavelet and denoising algorithm for analysis of foetal phonocardiographic signals.
    Chourasia VS; Mittra AK
    J Med Eng Technol; 2009; 33(6):442-8. PubMed ID: 19484684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Running discrete Fourier transform for time--frequency analysis of biomedical signals.
    Olkkonen H
    Med Eng Phys; 1995 Sep; 17(6):455-8. PubMed ID: 7582329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of fractional lower order S transform time frequency filtering algorithm to machine fault diagnosis.
    Long J; Wang H; Zha D; Li P; Xie H; Mao L
    PLoS One; 2017; 12(4):e0175202. PubMed ID: 28406916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressing the charged coupled device noise in univariate thin-layer videoscans: a comparison of several algorithms.
    Komsta L
    J Chromatogr A; 2009 Mar; 1216(12):2548-53. PubMed ID: 19187937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denoising of the uterine EHG by an undecimated wavelet transform.
    Carré P; Leman H; Fernandez C; Marque C
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1104-13. PubMed ID: 9735560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
    Hu K; Cheng Q; Gao X
    Magn Reson Imaging; 2016 Oct; 34(8):1128-40. PubMed ID: 27238055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECG Denoising Using Marginalized Particle Extended Kalman Filter With an Automatic Particle Weighting Strategy.
    Hesar HD; Mohebbi M
    IEEE J Biomed Health Inform; 2017 May; 21(3):635-644. PubMed ID: 27333615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new modified wavelet-based ECG denoising.
    Wang Z; Zhu J; Yan T; Yang L
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):174-183. PubMed ID: 30689434
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.