These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 19964477)

  • 21. Robustness of auditory Teager Energy Cepstrum Coefficients for classification of pathological and normal voices in noisy environments.
    Salhi L; Cherif A
    ScientificWorldJournal; 2013; 2013():435729. PubMed ID: 23818821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of wavelet packet transform and artificial neural networks in analysis and classification of dysphonic voices.
    Crovato CD; Schuck A
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1898-900. PubMed ID: 17926690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dimensionality reduction of a pathological voice quality assessment system based on Gaussian mixture models and short-term cepstral parameters.
    Godino-Llorente JI; Gómez-Vilda P; Blanco-Velasco M
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1943-53. PubMed ID: 17019858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification.
    Li F; Fan Y; Zhang X; Wang C; Hu F; Jia W; Hui H
    J Med Syst; 2019 Dec; 44(2):39. PubMed ID: 31865469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Speech sound classification and detection of articulation disorders with support vector machines and wavelets.
    Georgoulas G; Georgopoulos VC; Stylios CD
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2199-202. PubMed ID: 17946095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathological speech signal analysis using time-frequency approaches.
    Ghoraani B; Umapathy K; Sugavaneswaran L; Krishnan S
    Crit Rev Biomed Eng; 2012; 40(1):63-95. PubMed ID: 22428799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
    Godino-Llorente JI; Gómez-Vilda P
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Perceptual and automatic voice and speech analysis of chronic laryngitis and T1 vocal cord cancer].
    Bartke B; Haderlein T; Döllinger M; Nöth E; Graf S; Eysholdt U; Ziethe A
    HNO; 2013 Aug; 61(8):672-7. PubMed ID: 23744089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hybrid neural network system for pattern classification tasks with missing features.
    Lim CP; Leong JH; Kuan MM
    IEEE Trans Pattern Anal Mach Intell; 2005 Apr; 27(4):648-53. PubMed ID: 15794170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated speech analysis applied to laryngeal disease categorization.
    Gelzinis A; Verikas A; Bacauskiene M
    Comput Methods Programs Biomed; 2008 Jul; 91(1):36-47. PubMed ID: 18346812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of an automated, remote system to detect vocal fold paralysis.
    Wormald RN; Moran RJ; Reilly RB; Lacy PD
    Ann Otol Rhinol Laryngol; 2008 Nov; 117(11):834-8. PubMed ID: 19102129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fuzzy Naive Bayesian for constructing regulated network with weights.
    Zhou XY; Tian XW; Lim JS
    Biomed Mater Eng; 2015; 26 Suppl 1():S1757-62. PubMed ID: 26405944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated search for arthritic patterns in infrared spectra of synovial fluid using adaptive wavelets and fuzzy C-means analysis.
    Cui J; Loewy J; Kendall EJ
    IEEE Trans Biomed Eng; 2006 May; 53(5):800-9. PubMed ID: 16686402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generating fuzzy rules for constructing interpretable classifier of diabetes disease.
    Settouti N; Chikh MA; Saidi M
    Australas Phys Eng Sci Med; 2012 Sep; 35(3):257-70. PubMed ID: 22895813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel fuzzy approach for automatic Brunnstrom stage classification using surface electromyography.
    Liparulo L; Zhang Z; Panella M; Gu X; Fang Q
    Med Biol Eng Comput; 2017 Aug; 55(8):1367-1378. PubMed ID: 27909939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limited receptive area neural classifier for recognition of swallowing sounds using continuous wavelet transform.
    Makeyev O; Sazonov E; Schuckers S; Lopez-Meyer P; Melanson E; Neuman M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3128-31. PubMed ID: 18002658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A granular description of ECG signals.
    Gacek A; Pedrycz W
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1972-82. PubMed ID: 17019861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals.
    Umapathy K; Krishnan S
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):517-23. PubMed ID: 16532778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.