These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19964559)

  • 1. A novel method for assessing arterial stiffness by a hydrostatic approach.
    Liu Y; Poon CC; Zhang YT; Yip GW; Yu CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1789-91. PubMed ID: 19964559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive quantification of peripheral arterial volume distensibility and its non-linear relationship with arterial pressure.
    Zheng D; Murray A
    J Biomech; 2009 May; 42(8):1032-7. PubMed ID: 19345360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive in vivo assessment of changes in peripheral arterial properties with estimation of arterial volume compliance.
    Zheng D; Allen J; Murray A
    Physiol Meas; 2007 Oct; 28(10):1317-27. PubMed ID: 17906397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG.
    Liu J; Li Y; Ding XR; Dai WX; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5973-6. PubMed ID: 26737652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of finger arterial compliance-blood pressure function for an evaluation of the sympathetically mediated vascular tone].
    Tanaka G; Sawada Y; Matsumura K; Nagano Y; Yamakoshi K
    Shinrigaku Kenkyu; 2003 Jun; 74(2):156-63. PubMed ID: 12942905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-channel photoplethysmography to monitor local changes in vascular stiffness.
    Foo JY; Lim CS
    J Clin Monit Comput; 2006 Jun; 20(3):221-7. PubMed ID: 16775657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using the changes in hydrostatic pressure and pulse transit time to measure arterial blood pressure.
    Poon CC; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2336-7. PubMed ID: 18002460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Pulse Transit Time as a Function of Blood Pressure Using a Nonlinear Arterial Tube-Load Model.
    Gao M; Cheng HM; Sung SH; Chen CH; Olivier NB; Mukkamala R
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1524-1534. PubMed ID: 28113300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the bilateral pulse transit time difference with a moving arm.
    Jiang X; Wei S; Zheng D; Huang P; Liu C
    Technol Health Care; 2018; 26(S1):113-119. PubMed ID: 29710744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of pulse transit time as an index of arterial stiffness during exercise.
    Kounalakis SN; Geladas ND
    Cardiovasc Eng; 2009 Sep; 9(3):92-7. PubMed ID: 19657732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive pulse transit time measurement for arterial stiffness monitoring in microgravity.
    McCall C; Rostosky R; Wiard RM; Inan OT; Giovangrandi L; Cuttino CM; Kovacs GT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6429-32. PubMed ID: 26737764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beat-to-beat tracking of systolic blood pressure using noninvasive pulse transit time during anesthesia induction in hypertensive patients.
    Kim SH; Song JG; Park JH; Kim JW; Park YS; Hwang GS
    Anesth Analg; 2013 Jan; 116(1):94-100. PubMed ID: 23223109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry.
    von Wowern E; Östling G; Nilsson PM; Olofsson P
    PLoS One; 2015; 10(8):e0135659. PubMed ID: 26291079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study on the effect of sensor contact force on pulse transit time.
    Teng XF; Zhang YT
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1490-8. PubMed ID: 17694870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement.
    Jing Liu ; Yuan-Ting Zhang ; Xiao-Rong Ding ; Wen-Xuan Dai ; Ni Zhao
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():615-618. PubMed ID: 28324936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central arterial pulse wave augmentation is greater in girls than boys, independent of height.
    Ayer JG; Harmer JA; Marks GB; Avolio A; Celermajer DS
    J Hypertens; 2010 Feb; 28(2):306-13. PubMed ID: 20051902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of local cold exposure on pulse transit time.
    Zhang XY; Zhang YT
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3522-5. PubMed ID: 17280984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contactless recording of photoplethysmogram on a sleeping bed.
    Wong MM; Leung HK; Pickwell-MacPherson E; Gu WB; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():907-10. PubMed ID: 19964944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.