These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19964581)

  • 1. Slacking by the human motor system: computational models and implications for robotic orthoses.
    Reinkensmeyer DJ; Akoner O; Ferris DP; Gordon KE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2129-32. PubMed ID: 19964581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient robotic tendon for gait assistance.
    Hollander KW; Ilg R; Sugar TG; Herring D
    J Biomech Eng; 2006 Oct; 128(5):788-91. PubMed ID: 16995768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of tibialis anterior muscle electromyography, ankle angle, and velocity when individuals post stroke walk with different orthoses.
    Lairamore C; Garrison MK; Bandy W; Zabel R
    Prosthet Orthot Int; 2011 Dec; 35(4):402-10. PubMed ID: 21816883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation instrument for prevent contracture of ankle using the pneumatic balloon actuator.
    Saga N; Saito N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4294-7. PubMed ID: 19163662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies.
    Jamwal PK; Hussain S; Ghayesh MH
    Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor slacking during resisted treadmill walking: Can visual feedback of kinematics reduce this behavior?
    Washabaugh EP; Cubillos LH; Nelson AC; Cargile BT; Claflin ES; Krishnan C
    Gait Posture; 2021 Oct; 90():334-339. PubMed ID: 34564007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved powered ankle-foot orthosis using proportional myoelectric control.
    Ferris DP; Gordon KE; Sawicki GS; Peethambaran A
    Gait Posture; 2006 Jun; 23(4):425-8. PubMed ID: 16098749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single joint robotic orthoses for gait rehabilitation: An educational technical review.
    Hussain S; Jamwal PK; Ghayesh MH
    J Rehabil Med; 2016 Apr; 48(4):333-8. PubMed ID: 26936800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.
    Choi H; Wren TAL; Steele KM
    Prosthet Orthot Int; 2017 Jun; 41(3):274-285. PubMed ID: 27613590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of body weight support variation on muscle activities during robot assisted gait: a dynamic simulation study.
    Hussain S; Jamwal PK; Ghayesh MH
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):626-635. PubMed ID: 28349768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients.
    Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ankle-foot orthosis powered by artificial pneumatic muscles.
    Ferris DP; Czerniecki JM; Hannaford B
    J Appl Biomech; 2005 May; 21(2):189-97. PubMed ID: 16082019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time slacking as a default mode of grip force control: implications for force minimization and personal grip force variation.
    Smith BW; Rowe JB; Reinkensmeyer DJ
    J Neurophysiol; 2018 Oct; 120(4):2107-2120. PubMed ID: 30089024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of human walking with powered orthosis for designing practical assistive device.
    Uchiyama Y; Nagai C; Obinata G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4816-9. PubMed ID: 23367005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.