These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19964777)

  • 1. Aerial and terrestrial locomotion control of lift assisted insect biobots.
    Bozkurt A; Lal A; Gilmour R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2058-61. PubMed ID: 19964777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balloon-assisted flight of radio-controlled insect biobots.
    Bozkurt A; F Gilmour R; Lal A
    IEEE Trans Biomed Eng; 2009 Sep; 56(9):2304-7. PubMed ID: 19692306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic levitation platform for wireless study of insect flight neurophysiology.
    Verderber A; McKnight M; Bozkurt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1720-3. PubMed ID: 24110038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect-machine interface based neurocybernetics.
    Bozkurt A; Gilmour RF; Sinha A; Stern D; Lal A
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1727-33. PubMed ID: 19272983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early metamorphic insertion technology for insect flight behavior monitoring.
    Verderber A; McKnight M; Bozkurt A
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25079130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Template for robust soft-body crawling with reflex-triggered gripping.
    Schuldt DW; Rife J; Trimmer B
    Bioinspir Biomim; 2015 Feb; 10(1):016018. PubMed ID: 25650372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromuscular control of free-flight yaw turns in the hawkmoth Manduca sexta.
    Springthorpe D; Fernández MJ; Hedrick TL
    J Exp Biol; 2012 May; 215(Pt 10):1766-74. PubMed ID: 22539744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological self stabilization of locomotion gaits: illustration on a few examples from bio-inspired locomotion.
    Chevallereau C; Boyer F; Porez M; Mauny J; Aoustin Y
    Bioinspir Biomim; 2017 Jun; 12(4):046006. PubMed ID: 28631623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postembryonic development of centrally generated flight motor patterns in the hawkmoth, Manduca sexta.
    Vierk R; Duch C; Pflüger HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jan; 196(1):37-50. PubMed ID: 19924416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Manduca sexta.
    Tu MS; Daniel TL
    J Exp Biol; 2004 Dec; 207(Pt 26):4651-62. PubMed ID: 15579560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control.
    Sponberg S; Daniel TL; Fairhall AL
    PLoS Comput Biol; 2015 Apr; 11(4):e1004168. PubMed ID: 25919482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical endogenous heating of insect muscles for flight control.
    Bozkurt A; Lal A; Gilmour R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5786-9. PubMed ID: 19164032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.).
    Verspui R; Gray JR
    J Exp Biol; 2009 Oct; 212(Pt 20):3272-82. PubMed ID: 19801432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flight behaviour of the hawkmoth Manduca sexta towards unimodal and multimodal targets.
    Balkenius A; Dacke M
    J Exp Biol; 2010 Nov; 213(Pt 21):3741-7. PubMed ID: 20952624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrical enhancement in tissue-electrode coupling with metamorphic-stage insertions for insect machine interfaces.
    Bozkurt A; Gilmour R; Lal A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5420-3. PubMed ID: 22255563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.
    Nguyen AT; Han JS; Han JH
    Bioinspir Biomim; 2016 Dec; 12(1):016007. PubMed ID: 27966467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Manduca sexta forewings for flapping-wing micro aerial vehicles: how wing structure affects performance.
    Moses KC; Michaels SC; Willis M; Quinn RD
    Bioinspir Biomim; 2017 Sep; 12(5):055003. PubMed ID: 28691920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible split-ring electrode for insect flight biasing using multisite neural stimulation.
    Tsang WM; Stone AL; Aldworth ZN; Hildebrand JG; Daniel TL; Akinwande AI; Voldman J
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1757-64. PubMed ID: 20176539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.