BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19964799)

  • 21. Relation Between the Frequency of Short-Pulse Electrical Stimulation of Afferent Nerve Fibers and Evoked Muscle Force.
    Dideriksen J; Leerskov K; Czyzewska M; Rasmussen R
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2737-2745. PubMed ID: 28237919
    [No Abstract]   [Full Text] [Related]  

  • 22. Cardiac fibrillation risk of Taser weapons.
    Leitgeb N
    Health Phys; 2014 Jun; 106(6):652-9. PubMed ID: 24776896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of Tasers on people with mental illness A New Zealand database study.
    O'Brien AJ; McKenna BG; Thom K; Diesfeld K; Simpson AI
    Int J Law Psychiatry; 2011; 34(1):39-43. PubMed ID: 21126765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The topical problems of the application of the TASER electroshock devices].
    Kondratova IV; Kulinkovich KY
    Sud Med Ekspert; 2017; 60(2):57-64. PubMed ID: 28399089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread.
    Ho J; Dawes D; Miner J; Kunz S; Nelson R; Sweeney J
    Forensic Sci Med Pathol; 2012 Dec; 8(4):358-66. PubMed ID: 22610783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pulse charge and not waveform affects M-wave properties during progressive motor unit activation.
    Botter A; Merletti R; Minetto MA
    J Electromyogr Kinesiol; 2009 Aug; 19(4):564-73. PubMed ID: 18455437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Change in muscle force following electrical stimulation. Dependence on stimulation waveform and frequency.
    Stefanovska A; Vodovnik L
    Scand J Rehabil Med; 1985; 17(3):141-6. PubMed ID: 4059886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of stimulation frequency on neuromuscular fatigue.
    Vitry F; Martin A; Papaiordanidou M
    Eur J Appl Physiol; 2019 Dec; 119(11-12):2609-2616. PubMed ID: 31605203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation.
    Baldwin ER; Klakowicz PM; Collins DF
    J Appl Physiol (1985); 2006 Jul; 101(1):228-40. PubMed ID: 16627680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Human Electro-Muscular Incapacitation (HEMI) Devices on Cardiovascular Changes in Anesthetized Swine as Measured by Transesophageal Echocardiography (TEE).
    Werner JR; Murray WB; Kennett MJ; Jenkins DM; Liszka E; Hughes EL
    J Forensic Sci; 2019 Mar; 64(2):446-453. PubMed ID: 29758093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A phenomenological model that predicts forces generated when electrical stimulation is superimposed on submaximal volitional contractions.
    Perumal R; Wexler AS; Kesar TM; Jancosko A; Laufer Y; Binder-Macleod SA
    J Appl Physiol (1985); 2010 Jun; 108(6):1595-604. PubMed ID: 20299613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localized electrical nerve blocking.
    Williamson RP; Andrews BJ
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):362-70. PubMed ID: 15759566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved muscle activation using proximal nerve stimulation with subthreshold current pulses at kilohertz-frequency.
    Zheng Y; Hu X
    J Neural Eng; 2018 Aug; 15(4):046001. PubMed ID: 29569574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies that improve human skeletal muscle performance during repetitive, non-isometric contractions.
    Kebaetse MB; Binder-Macleod SA
    Pflugers Arch; 2004 Aug; 448(5):525-32. PubMed ID: 15168123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardiac stimulation with electronic control device application.
    Koerber SM; Ardhanari S; McDaniel WC; Chockalingam A; Zymek P; Flaker G
    J Emerg Med; 2014 Oct; 47(4):486-92. PubMed ID: 25154556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical stimulation factors in potentiation of human quadriceps femoris.
    Binder-Macleod SA; Dean JC; Ding J
    Muscle Nerve; 2002 Feb; 25(2):271-9. PubMed ID: 11870697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MRI quantification of muscle activity after volitional exercise and neuromuscular electrical stimulation.
    Ogino M; Shiba N; Maeda T; Iwasa K; Tagawa Y; Matsuo S; Nishimura H; Yamamoto T; Nagata K; Basford JR
    Am J Phys Med Rehabil; 2002 Jun; 81(6):446-51. PubMed ID: 12023602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing the force ripple during asynchronous and conventional stimulation.
    Downey RJ; Tate M; Kawai H; Dixon WE
    Muscle Nerve; 2014 Oct; 50(4):549-55. PubMed ID: 24481749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimating the probability that the Taser directly causes human ventricular fibrillation.
    Sun H; Haemmerich D; Rahko PS; Webster JG
    J Med Eng Technol; 2010 Apr; 34(3):178-91. PubMed ID: 20064078
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.