BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 19964821)

  • 1. Nonlinear optical microscopy and computational analysis of intrinsic signatures in breast cancer.
    Rueden CT; Conklin MW; Provenzano PP; Keely PJ; Eliceiri KW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4077-80. PubMed ID: 19964821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer.
    Provenzano PP; Rueden CT; Trier SM; Yan L; Ponik SM; Inman DR; Keely PJ; Eliceiri KW
    J Biomed Opt; 2008; 13(3):031220. PubMed ID: 18601544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment.
    Provenzano PP; Eliceiri KW; Keely PJ
    Clin Exp Metastasis; 2009; 26(4):357-70. PubMed ID: 18766302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harmonic optical microscopy and fluorescence lifetime imaging platform for multimodal imaging.
    Pelegati VB; Adur J; De Thomaz AA; Almeida DB; Baratti MO; Andrade LA; Bottcher-Luiz F; Cesar CL
    Microsc Res Tech; 2012 Oct; 75(10):1383-94. PubMed ID: 22648907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear optical imaging of cellular processes in breast cancer.
    Provenzano PP; Eliceiri KW; Yan L; Ada-Nguema A; Conklin MW; Inman DR; Keely PJ
    Microsc Microanal; 2008 Dec; 14(6):532-48. PubMed ID: 18986607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
    Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ
    Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the process of pulmonary melanoma metastasis using large area and label-free nonlinear optical microscopy.
    Hua D; Qi S; Li H; Zhang Z; Fu L
    J Biomed Opt; 2012 Jun; 17(6):066002. PubMed ID: 22734758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer.
    Bredfeldt JS; Liu Y; Pehlke CA; Conklin MW; Szulczewski JM; Inman DR; Keely PJ; Nowak RD; Mackie TR; Eliceiri KW
    J Biomed Opt; 2014 Jan; 19(1):16007. PubMed ID: 24407500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital autofocus methods for automated microscopy.
    Shen F; Hodgson L; Hahn K
    Methods Enzymol; 2006; 414():620-32. PubMed ID: 17110214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen reorganization at the tumor-stromal interface facilitates local invasion.
    Provenzano PP; Eliceiri KW; Campbell JM; Inman DR; White JG; Keely PJ
    BMC Med; 2006 Dec; 4(1):38. PubMed ID: 17190588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Types of advanced optical microscopy techniques for breast cancer research: a review.
    Dravid U A; Mazumder N
    Lasers Med Sci; 2018 Dec; 33(9):1849-1858. PubMed ID: 30311083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy.
    Sorrells JE; Iyer RR; Yang L; Chaney EJ; Marjanovic M; Tu H; Boppart SA
    Opt Express; 2021 Nov; 29(23):37759-37775. PubMed ID: 34808842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Visualization of Stromal Macrophages via label-free FLIM-based metabolite imaging.
    Szulczewski JM; Inman DR; Entenberg D; Ponik SM; Aguirre-Ghiso J; Castracane J; Condeelis J; Eliceiri KW; Keely PJ
    Sci Rep; 2016 May; 6():25086. PubMed ID: 27220760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging.
    Majeed H; Okoro C; Kajdacsy-Balla A; Toussaint KC; Popescu G
    J Biomed Opt; 2017 Apr; 22(4):46004. PubMed ID: 28388706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel bioreactor for combined magnetic resonance spectroscopy and optical imaging of metabolism in 3D cell cultures.
    Cox BL; Erickson-Bhatt S; Szulczewski JM; Squirrell JM; Ludwig KD; Macdonald EB; Swader R; Ponik SM; Eliceiri KW; Fain SB
    Magn Reson Med; 2019 May; 81(5):3379-3391. PubMed ID: 30652350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the origin of autofluorescence in human esophageal epithelium under ultraviolet excitation.
    Lin B; Urayama S; Saroufeem RM; Matthews DL; Demos SG
    Opt Express; 2010 Sep; 18(20):21074-82. PubMed ID: 20941003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined optical and fluorescence imaging for breast cancer detection and diagnosis.
    Jiang H; Ramesh S; Bartlett M
    Crit Rev Biomed Eng; 2000; 28(3 - 4):371-5. PubMed ID: 11108201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI).
    Dertinger T; Colyer R; Vogel R; Enderlein J; Weiss S
    Opt Express; 2010 Aug; 18(18):18875-85. PubMed ID: 20940780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
    Cong A; Pimenta RML; Lee HB; Mereddy V; Holy J; Heikal AA
    Cytometry A; 2019 Jan; 95(1):80-92. PubMed ID: 30343512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.
    Masè M; Cristoforetti A; Avogaro L; Tessarolo F; Piccoli F; Caola I; Pederzolli C; Graffigna A; Ravelli F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6257-60. PubMed ID: 26737722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.