These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 19964857)
1. Robotic patch-stabilizer using wire driven mechanism for minimally invasive fetal surgery. Zhang B; Kobayashi Y; Chiba T; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5076-9. PubMed ID: 19964857 [TBL] [Abstract][Full Text] [Related]
2. Fetus-supporting flexible manipulator with balloon-type stabilizer for endoscopic intrauterine surgery. Liao H; Suzuki H; Matsumiya K; Masamune K; Dohi T; Chiba T Int J Med Robot; 2008 Sep; 4(3):214-23. PubMed ID: 18680139 [TBL] [Abstract][Full Text] [Related]
3. Fetus support manipulator with flexible balloon-based stabilizer for endoscopic intrauterine surgery. Liao H; Suzuki H; Matsumiya K; Masamune K; Dohi T; Chiba T Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):412-9. PubMed ID: 17354917 [TBL] [Abstract][Full Text] [Related]
4. Wire-driven flexible manipulator with constrained spherical joints for minimally invasive surgery. Ji D; Kang TH; Shim S; Lee S; Hong J Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1365-1377. PubMed ID: 30997634 [TBL] [Abstract][Full Text] [Related]
5. Partial amniotic carbon dioxide insufflation (PACI) during minimally invasive fetoscopic interventions on fetuses with spina bifida aperta. Ziemann M; Fimmers R; Khaleeva A; Schürg R; Weigand MA; Kohl T Surg Endosc; 2018 Jul; 32(7):3138-3148. PubMed ID: 29340812 [TBL] [Abstract][Full Text] [Related]
6. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. He C; Wang S; Sang H; Li J; Zhang L Int J Med Robot; 2014 Sep; 10(3):314-24. PubMed ID: 24030887 [TBL] [Abstract][Full Text] [Related]
7. Design of a new haptic device and experiments in minimally invasive surgical robot. Wang T; Pan B; Fu Y; Wang S; Ai Y Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504 [TBL] [Abstract][Full Text] [Related]
8. Development of a 6-DOF manipulator driven by flexible shaft for minimally invasive surgical application. Liu Q; Kobayashi Y; Noguchi T; Inko E; Sekiguchi Y; Zhang B; Ye J; Toyoda K; Hashizume M; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6261-4. PubMed ID: 24111171 [TBL] [Abstract][Full Text] [Related]
9. Robotic intragastric surgery: a new surgical approach for the gastric lesion. Hirano Y; Ishikawa N; Omura K; Inaki N; Hiranuma C; Waseda R; Watanabe G Surg Endosc; 2007 Nov; 21(11):2112-4. PubMed ID: 17353976 [TBL] [Abstract][Full Text] [Related]
10. Minimally Invasive Surgical Device for Precise Application of Bioadhesives to Prevent iPPROM. Devaud YR; Züger S; Zimmermann R; Ehrbar M; Ochsenbein-Kölble N Fetal Diagn Ther; 2019; 45(2):102-110. PubMed ID: 29920508 [TBL] [Abstract][Full Text] [Related]
11. A cable-driven distal end-effector mechanism for single-port robotic surgery. Wang Y; Cao Q; Zhu X; Wang P Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):301-309. PubMed ID: 33389605 [TBL] [Abstract][Full Text] [Related]
12. The Minimally Invasive Manipulator: an ergonomic and economic non-robotic alternative for endoscopy? Bosma J; Aarts S; Jaspers J Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):24-30. PubMed ID: 25627434 [TBL] [Abstract][Full Text] [Related]
13. A soft multi-module manipulator with variable stiffness for minimally invasive surgery. De Falco I; Cianchetti M; Menciassi A Bioinspir Biomim; 2017 Sep; 12(5):056008. PubMed ID: 28675144 [TBL] [Abstract][Full Text] [Related]
14. [Peri- and postoperative management for minimally invasive fetoscopic surgery of spina bifida]. Degenhardt J; Axt-Fliedner R; Enzensberger C; Tenzer A; Kawecki A; Kohl T Z Geburtshilfe Neonatol; 2014 Dec; 218(6):244-7. PubMed ID: 25518829 [TBL] [Abstract][Full Text] [Related]
15. Pneumatically driven surgical instrument capable of estimating translational force and grasping force. Miyazaki R; Kanno T; Kawashima K Int J Med Robot; 2019 Jun; 15(3):e1983. PubMed ID: 30648783 [TBL] [Abstract][Full Text] [Related]
16. Percutaneous minimally invasive fetoscopic surgery for spina bifida aperta. Part III: neurosurgical intervention in the first postnatal year. Graf K; Kohl T; Neubauer BA; Dey F; Faas D; Wanis FA; Reinges MH; Uhl E; Kolodziej MA Ultrasound Obstet Gynecol; 2016 Feb; 47(2):158-61. PubMed ID: 26138563 [TBL] [Abstract][Full Text] [Related]
17. Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute. Lapa Pedreira DA; Acacio GL; Gonçalves RT; Sá RAM; Brandt RA; Chmait RH; Kontopoulos EV; Quintero RA Ultrasound Obstet Gynecol; 2018 Oct; 52(4):458-466. PubMed ID: 29314321 [TBL] [Abstract][Full Text] [Related]
18. Steerable catheters for minimally invasive surgery: a review and future directions. Hu X; Chen A; Luo Y; Zhang C; Zhang E Comput Assist Surg (Abingdon); 2018 Dec; 23(1):21-41. PubMed ID: 30497292 [TBL] [Abstract][Full Text] [Related]
19. Mobile locally operated detachable end-effector manipulator for endoscopic surgery. Kawai T; Shin M; Nishizawa Y; Horise Y; Nishikawa A; Nakamura T Int J Comput Assist Radiol Surg; 2015 Feb; 10(2):161-9. PubMed ID: 24799272 [TBL] [Abstract][Full Text] [Related]
20. Characteristic of a force sensing guide wire for minimally invasive cardiac surgery. Stefanova N; Hessinger M; Opitz T; Werthschutzky R Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5220-5223. PubMed ID: 28269441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]