These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19964925)

  • 1. Experimental validation of an optical system for interrogation of dermally-implanted microparticle sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():122-5. PubMed ID: 19964925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical instrument design for interrogation of dermally-implanted luminescent microparticle sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5656-9. PubMed ID: 19164000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-efficiency optical systems for interrogation of dermally-implanted sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1033-6. PubMed ID: 21097206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput spectral system for interrogation of dermally-implanted luminescent sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2351-4. PubMed ID: 23366396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of an optical system for interrogation of implanted luminescent sensors and verification with silicone skin phantoms.
    Long R; McShane M
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2459-65. PubMed ID: 22692874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional, multiwavelength Monte Carlo simulations of dermally implantable luminescent sensors.
    Long R; McShane M
    J Biomed Opt; 2010; 15(2):027011. PubMed ID: 20459285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of selective photon capture for collection of fluorescence emitted from dermally-implanted microparticle sensors.
    Long R; McShane MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2972-5. PubMed ID: 18002619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical system design for biosensors based on CCD detection.
    Christensen DA; Herron JN
    Methods Mol Biol; 2009; 503():239-58. PubMed ID: 19151945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A human pilot study of the fluorescence affinity sensor for continuous glucose monitoring in diabetes.
    Dutt-Ballerstadt R; Evans C; Pillai AP; Orzeck E; Drabek R; Gowda A; McNichols R
    J Diabetes Sci Technol; 2012 Mar; 6(2):362-70. PubMed ID: 22538148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensors for real-time in vivo measurements.
    Wilson GS; Gifford R
    Biosens Bioelectron; 2005 Jun; 20(12):2388-403. PubMed ID: 15854814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the longevity of microparticle-based glucose sensors towards 1 month continuous operation.
    Singh S; McShane M
    Biosens Bioelectron; 2010 Jan; 25(5):1075-81. PubMed ID: 19926464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple portable electroluminescence illumination-based CCD detector.
    Kostov Y; Sergeev N; Wilson S; Herold KE; Rasooly A
    Methods Mol Biol; 2009; 503():259-72. PubMed ID: 19151946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and testing of a fluorescence glucose sensor which incorporates a bioinductive material.
    Chen HC; Ahmed J
    Biomed Sci Instrum; 2004; 40():149-54. PubMed ID: 15133950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose Monitoring in Individuals With Diabetes Using a Long-Term Implanted Sensor/Telemetry System and Model.
    Lucisano JY; Routh TL; Lin JT; Gough DA
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):1982-1993. PubMed ID: 27775510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local release of masitinib alters in vivo implantable continuous glucose sensor performance.
    Avula M; Jones D; Rao AN; McClain D; McGill LD; Grainger DW; Solzbacher F
    Biosens Bioelectron; 2016 Mar; 77():149-56. PubMed ID: 26402593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation.
    Gourzi M; Rouane A; Guelaz R; Alavi MS; McHugh MB; Nadi M; Roth P
    J Med Eng Technol; 2005; 29(1):22-6. PubMed ID: 15764378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual closed-loop, optoelectronic, auto-oscillatory detection circuit for monitoring fluorescence lifetime-based chemical sensors and biosensors.
    Rabinovich E; Sviminoshvilli T; O'Brien MJ; Brueck SR; Lopez GP
    J Biomed Opt; 2004; 9(3):609-17. PubMed ID: 15189100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes.
    Mortellaro M; DeHennis A
    Biosens Bioelectron; 2014 Nov; 61():227-31. PubMed ID: 24906080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of porosity in tuning the response range of microsphere-based glucose sensors.
    Singh S; McShane M
    Biosens Bioelectron; 2011 Jan; 26(5):2478-83. PubMed ID: 21111602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.