These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 19964995)
21. Detecting overlapped functional clusters in resting state fMRI with Connected Iterative Scan: a graph theory based clustering algorithm. Yan X; Kelley S; Goldberg M; Biswal BB J Neurosci Methods; 2011 Jul; 199(1):108-18. PubMed ID: 21565220 [TBL] [Abstract][Full Text] [Related]
22. From brain connectivity models to identifying foci of a neurological disorder. Venkataraman A; Kubicki M; Golland P Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):715-22. PubMed ID: 23285615 [TBL] [Abstract][Full Text] [Related]
23. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442 [TBL] [Abstract][Full Text] [Related]
24. T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI. Hu Y; Li X; Wang L; Han B; Nie S Brain Res Bull; 2020 Sep; 162():199-207. PubMed ID: 32603775 [TBL] [Abstract][Full Text] [Related]
25. Altered functional organization within the insular cortex in adult males with high-functioning autism spectrum disorder: evidence from connectivity-based parcellation. Yamada T; Itahashi T; Nakamura M; Watanabe H; Kuroda M; Ohta H; Kanai C; Kato N; Hashimoto RI Mol Autism; 2016; 7():41. PubMed ID: 27713815 [TBL] [Abstract][Full Text] [Related]
26. Contrastive voxel clustering for multiscale modeling of brain network. Ding Z; Huang Y; Zeng X; Jiang S; Feng S; Wang Z; Wang L; Wang Z; Xu Y; Liu Y; Neuroimage; 2024 Aug; 297():120755. PubMed ID: 39074761 [TBL] [Abstract][Full Text] [Related]
27. Connectivity-Based Brain Parcellation: A Connectivity-Based Atlas for Schizophrenia Research. Wang Q; Chen R; JaJa J; Jin Y; Hong LE; Herskovits EH Neuroinformatics; 2016 Jan; 14(1):83-97. PubMed ID: 26433899 [TBL] [Abstract][Full Text] [Related]
28. Evaluating brain parcellations using the distance-controlled boundary coefficient. Zhi D; King M; Hernandez-Castillo CR; Diedrichsen J Hum Brain Mapp; 2022 Aug; 43(12):3706-3720. PubMed ID: 35451538 [TBL] [Abstract][Full Text] [Related]
29. Feature-reduction and semi-simulated data in functional connectivity-based cortical parcellation. Tian X; Liu C; Jiang T; Rizak J; Ma Y; Hu X Neurosci Bull; 2013 Jun; 29(3):333-47. PubMed ID: 23700282 [TBL] [Abstract][Full Text] [Related]
30. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis. Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076 [TBL] [Abstract][Full Text] [Related]
31. Group-wise parcellation of the cortex through multi-scale spectral clustering. Parisot S; Arslan S; Passerat-Palmbach J; Wells WM; Rueckert D Neuroimage; 2016 Aug; 136():68-83. PubMed ID: 27192437 [TBL] [Abstract][Full Text] [Related]
32. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach. Mishra A; Rogers BP; Chen LM; Gore JC Hum Brain Mapp; 2014 Apr; 35(4):1247-60. PubMed ID: 23418140 [TBL] [Abstract][Full Text] [Related]
33. Differential Covariance: A New Method to Estimate Functional Connectivity in fMRI. Lin TW; Chen Y; Bukhari Q; Krishnan GP; Bazhenov M; Sejnowski TJ Neural Comput; 2020 Dec; 32(12):2389-2421. PubMed ID: 32946714 [TBL] [Abstract][Full Text] [Related]
35. Groupwise spatial normalization of fMRI data based on multi-range functional connectivity patterns. Jiang D; Du Y; Cheng H; Jiang T; Fan Y Neuroimage; 2013 Nov; 82():355-72. PubMed ID: 23727315 [TBL] [Abstract][Full Text] [Related]
36. Frequency domain connectivity identification: an application of partial directed coherence in fMRI. Sato JR; Takahashi DY; Arcuri SM; Sameshima K; Morettin PA; Baccalá LA Hum Brain Mapp; 2009 Feb; 30(2):452-61. PubMed ID: 18064582 [TBL] [Abstract][Full Text] [Related]
37. Functional organization of the human posterior cingulate cortex, revealed by multiple connectivity-based parcellation methods. Cha J; Jo HJ; Gibson WS; Lee JM Hum Brain Mapp; 2017 Jun; 38(6):2808-2818. PubMed ID: 28294456 [TBL] [Abstract][Full Text] [Related]
38. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data. James GA; Hazaroglu O; Bush KA Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655 [TBL] [Abstract][Full Text] [Related]
39. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Zerbi V; Grandjean J; Rudin M; Wenderoth N Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501 [TBL] [Abstract][Full Text] [Related]
40. Bagging improves reproducibility of functional parcellation of the human brain. Nikolaidis A; Solon Heinsfeld A; Xu T; Bellec P; Vogelstein J; Milham M Neuroimage; 2020 Jul; 214():116678. PubMed ID: 32119986 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]