These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19965053)

  • 1. State estimation of walking phase and functional electrical stimulation by wearable device.
    Obinata G; Ogisu T; Hase K; Kim Y; Genda E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5901-4. PubMed ID: 19965053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of functional electrical stimulation, applied during walking, on gait in spastic cerebral palsy.
    Postans NJ; Granat MH
    Dev Med Child Neurol; 2005 Jan; 47(1):46-52. PubMed ID: 15686289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of tasks performed by stroke patients using a mobility assistive device.
    Hester T; Sherrill DM; Hamel M; Perreault K; Boissy P; Bonato P
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1501-4. PubMed ID: 17946896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a self-contained accelerometry based system for control of functional electrical stimulation in hemiplegia.
    Foglyano KM; Schnellenberger JR; Kobetic R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5448-51. PubMed ID: 22255570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incremental diagnosis method for intelligent wearable sensor systems.
    Wu WH; Bui AA; Batalin MA; Liu D; Kaiser WJ
    IEEE Trans Inf Technol Biomed; 2007 Sep; 11(5):553-62. PubMed ID: 17912972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pelvic motion driven electrical stimulator for drop-foot treatment.
    Chen SW; Chen SC; Chen CF; Lai JS; Kuo TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():666-9. PubMed ID: 19964237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait assessment in Parkinson's disease: toward an ambulatory system for long-term monitoring.
    Salarian A; Russmann H; Vingerhoets FJ; Dehollain C; Blanc Y; Burkhard PR; Aminian K
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1434-43. PubMed ID: 15311830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion tolerance in wearable sensors--the challenge of motion artifact.
    Such O
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1542-5. PubMed ID: 18002263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The long-term cost-effectiveness of the use of Functional Electrical Stimulation for the correction of dropped foot due to upper motor neuron lesion.
    Taylor P; Humphreys L; Swain I
    J Rehabil Med; 2013 Feb; 45(2):154-60. PubMed ID: 23303521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroprosthesis peroneal functional electrical stimulation in the acute inpatient rehabilitation setting: a case series.
    Dunning K; Black K; Harrison A; McBride K; Israel S
    Phys Ther; 2009 May; 89(5):499-506. PubMed ID: 19270044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambulation study of a woman with paraplegia using a reciprocating gait orthosis with functional electrical stimulation in Taiwan: a case report.
    Chen WL; Chang WH; Chen CC; Hsieh JC; Shih YY; Chen YL
    Disabil Rehabil Assist Technol; 2009 Nov; 4(6):429-38. PubMed ID: 19817657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An exploratory study of gait and functional outcomes after neuroprosthesis use in children with hemiplegic cerebral palsy.
    Bailes AF; Caldwell C; Clay M; Tremper M; Dunning K; Long J
    Disabil Rehabil; 2017 Nov; 39(22):2277-2285. PubMed ID: 27636551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Individualized Functional Electrical Stimulation-Induced Acute Changes during Walking: A Case Series in Children with Cerebral Palsy.
    Zahradka N; Behboodi A; Sansare A; Lee SCK
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.
    Rose J; Cahill-Rowley K; Butler EE
    Artif Organs; 2017 Nov; 41(11):E233-E239. PubMed ID: 29148138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of functional electrical stimulation on walking speed, functional walking category, and clinically meaningful changes for people with multiple sclerosis.
    Street T; Taylor P; Swain I
    Arch Phys Med Rehabil; 2015 Apr; 96(4):667-72. PubMed ID: 25499688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing walking activity in people with stroke.
    Fulk GD; Lopez-Meyer P; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5211-4. PubMed ID: 22255512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A system to integrate electrical stimulation with robotically controlled treadmill training to rehabilitate stepping after spinal cord injury.
    Chao T; Askari S; De Leon R; Won D
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):730-7. PubMed ID: 22692941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait Analysis From a Single Ear-Worn Sensor: Reliability and Clinical Evaluation for Orthopaedic Patients.
    Jarchi D; Lo B; Wong C; Ieong E; Nathwani D; Yang GZ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):882-92. PubMed ID: 26357402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile drop foot stimulator for research applications.
    O'Keeffe DT; Lyons GM
    Med Eng Phys; 2002 Apr; 24(3):237-42. PubMed ID: 12062182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.