These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19965059)

  • 1. Influence of motor imagery on learning under complex external dynamics.
    Anwar MN; Tomi N; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5926-9. PubMed ID: 19965059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor imagery facilitates force field learning.
    Anwar MN; Tomi N; Ito K
    Brain Res; 2011 Jun; 1395():21-9. PubMed ID: 21555118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trial-by-trial adaptation of movements during mental practice under force field.
    Anwar MN; Khan SH
    Comput Math Methods Med; 2013; 2013():109497. PubMed ID: 23737857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance control complements incomplete internal models under complex external dynamics.
    Tomi N; Gouko M; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5354-7. PubMed ID: 19163927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning.
    Hosseini EA; Nguyen KP; Joiner WM
    PLoS Comput Biol; 2017 May; 13(5):e1005492. PubMed ID: 28481891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of kinematic redundancy in adaptation of reaching.
    Yang JF; Scholz JP; Latash ML
    Exp Brain Res; 2007 Jan; 176(1):54-69. PubMed ID: 16874517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor learning without doing: trial-by-trial improvement in motor performance during mental training.
    Gentili R; Han CE; Schweighofer N; Papaxanthis C
    J Neurophysiol; 2010 Aug; 104(2):774-83. PubMed ID: 20538766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in brain activity during action observation and motor imagery: Their relationship with motor learning.
    Mizuguchi N; Kanosue K
    Prog Brain Res; 2017; 234():189-204. PubMed ID: 29031463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of motor imagery on intermanual transfer: a near-infrared spectroscopy and behavioural study.
    Amemiya K; Ishizu T; Ayabe T; Kojima S
    Brain Res; 2010 Jul; 1343():93-103. PubMed ID: 20423702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laterality effects in motor learning by mental practice in right-handers.
    Gentili RJ; Papaxanthis C
    Neuroscience; 2015 Jun; 297():231-42. PubMed ID: 25797464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.
    Batcho CS; Gagné M; Bouyer LJ; Roy JS; Mercier C
    Neuroscience; 2016 Nov; 337():267-275. PubMed ID: 27646292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral improvements and brain functional alterations by motor imagery training.
    Zhang H; Xu L; Wang S; Xie B; Guo J; Long Z; Yao L
    Brain Res; 2011 Aug; 1407():38-46. PubMed ID: 21764038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention.
    Sacco K; Cauda F; D'Agata F; Mate D; Duca S; Geminiani G
    Brain Res; 2009 Nov; 1297():124-34. PubMed ID: 19703428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Motor imagery and its practical application].
    Mokienko OA; Chernikova LA; Frolov AA; Bobrov PD
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2013; 63(2):195-204. PubMed ID: 23866606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement.
    Sauvage C; De Greef N; Manto M; Jissendi P; Nioche C; Habas C
    J Neuroradiol; 2015 Apr; 42(2):115-25. PubMed ID: 24976537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The trajectory of adaptation to the visuo-motor transformation of virtual and real sliding levers.
    Sülzenbrück S; Heuer H
    Exp Brain Res; 2010 Mar; 201(3):549-60. PubMed ID: 19902192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor imagery influences the execution of repetitive finger opposition movements.
    Avanzino L; Giannini A; Tacchino A; Pelosin E; Ruggeri P; Bove M
    Neurosci Lett; 2009 Nov; 466(1):11-5. PubMed ID: 19770024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.