These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19965059)

  • 21. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor sequence learning and intermanual transfer with a phantom limb.
    Garbarini F; Bisio A; Biggio M; Pia L; Bove M
    Cortex; 2018 Apr; 101():181-191. PubMed ID: 29482016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prism adaptation by mental practice.
    Michel C; Gaveau J; Pozzo T; Papaxanthis C
    Cortex; 2013 Sep; 49(8):2249-59. PubMed ID: 23276397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscleless motor synergies and actions without movements: From motor neuroscience to cognitive robotics.
    Mohan V; Bhat A; Morasso P
    Phys Life Rev; 2019 Oct; 30():89-111. PubMed ID: 29903532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mental route to motor learning: improving trajectorial kinematics through imagery training.
    Yágüez L; Nagel D; Hoffman H; Canavan AG; Wist E; Hömberg V
    Behav Brain Res; 1998 Jan; 90(1):95-106. PubMed ID: 9520217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the effects of a sensorimotor rhythm-based BCI training on the cortical activity elicited by mental imagery.
    Toppi J; Risetti M; Quitadamo LR; Petti M; Bianchi L; Salinari S; Babiloni F; Cincotti F; Mattia D; Astolfi L
    J Neural Eng; 2014 Jun; 11(3):035010. PubMed ID: 24835634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying the neural representation of fast and slow states in force field adaptation via fMRI.
    Farrens AJ; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1007-1012. PubMed ID: 31374761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroencephalographic identifiers of motor adaptation learning.
    Özdenizci O; Yalçın M; Erdoğan A; Patoğlu V; Grosse-Wentrup M; Çetin M
    J Neural Eng; 2017 Aug; 14(4):046027. PubMed ID: 28367834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor learning produces parallel dynamic functional changes during the execution and imagination of sequential foot movements.
    Lafleur MF; Jackson PL; Malouin F; Richards CL; Evans AC; Doyon J
    Neuroimage; 2002 May; 16(1):142-57. PubMed ID: 11969325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid motor cortical plasticity can be induced by motor imagery training.
    Yoxon E; Welsh TN
    Neuropsychologia; 2019 Nov; 134():107206. PubMed ID: 31563576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery.
    Jackson PL; Lafleur MF; Malouin F; Richards CL; Doyon J
    Neuroimage; 2003 Oct; 20(2):1171-80. PubMed ID: 14568486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaling down motor memories: de-adaptation after motor learning.
    Davidson PR; Wolpert DM
    Neurosci Lett; 2004 Nov; 370(2-3):102-7. PubMed ID: 15488303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of imagery capacity in motor performance improvement.
    Ruffino C; Papaxanthis C; Lebon F
    Exp Brain Res; 2017 Oct; 235(10):3049-3057. PubMed ID: 28733754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural plasticity during motor learning with motor imagery practice: Review and perspectives.
    Ruffino C; Papaxanthis C; Lebon F
    Neuroscience; 2017 Jan; 341():61-78. PubMed ID: 27890831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Motor imagery development in primary school children.
    Caeyenberghs K; Tsoupas J; Wilson PH; Smits-Engelsman BC
    Dev Neuropsychol; 2009; 34(1):103-21. PubMed ID: 19142769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis.
    Cabral-Sequeira AS; Coelho DB; Teixeira LA
    Exp Brain Res; 2016 Jun; 234(6):1515-24. PubMed ID: 26821314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting Action Observation and Motor Imagery to Promote Plasticity and Learning.
    Bisio A; Bassolino M; Pozzo T; Wenderoth N
    Neural Plast; 2018; 2018():8625861. PubMed ID: 30532773
    [No Abstract]   [Full Text] [Related]  

  • 39. Your mind's hand: motor imagery of pointing movements with different accuracy.
    Lorey B; Pilgramm S; Walter B; Stark R; Munzert J; Zentgraf K
    Neuroimage; 2010 Feb; 49(4):3239-47. PubMed ID: 19948224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term adaptation to prism-induced inversion of the retinal images.
    Richter H; Magnusson S; Imamura K; Fredrikson M; Okura M; Watanabe Y; Långström B
    Exp Brain Res; 2002 Jun; 144(4):445-57. PubMed ID: 12037630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.