These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 19965069)
1. Modeling bimodal vessel effects on radio and microwave frequency ablation zones. Brannan JD; Ladtkow CM Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5989-92. PubMed ID: 19965069 [TBL] [Abstract][Full Text] [Related]
2. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Pillai K; Akhter J; Chua TC; Shehata M; Alzahrani N; Al-Alem I; Morris DL Medicine (Baltimore); 2015 Mar; 94(9):e580. PubMed ID: 25738477 [TBL] [Abstract][Full Text] [Related]
3. Physical modeling of microwave ablation zone clinical margin variance. Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574 [TBL] [Abstract][Full Text] [Related]
4. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Huang HW Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457 [TBL] [Abstract][Full Text] [Related]
5. Periportal fields cause stronger cooling effects than veins in hepatic microwave ablation: an in vivo porcine study. Poch FG; Geyer B; Neizert CA; Gemeinhardt O; Niehues SM; Vahldiek JL; Frericks B; Lehmann KS Acta Radiol; 2021 Mar; 62(3):322-328. PubMed ID: 32493033 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the Heat Sink Effect After Transarterial Embolization When Performed in Combination with Thermal Ablation of the Liver in a Rabbit Model. Puza CJ; Wang Q; Kim CY Cardiovasc Intervent Radiol; 2018 Nov; 41(11):1773-1778. PubMed ID: 30039505 [TBL] [Abstract][Full Text] [Related]
7. Validation of accuracy of liver model with temperature-dependent thermal conductivity by comparing the simulation and in vitro RF ablation experiment. Watanabe H; Yamazaki N; Isobe Y; Lu X; Kobayashi Y; Miyashita T; Ohdaira T; Hashizume M; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5712-7. PubMed ID: 23367227 [TBL] [Abstract][Full Text] [Related]
8. Perivascular extension of microwave ablation zone: demonstrated using an ex vivo porcine perfusion liver model. Singh S; Siriwardana PN; Johnston EW; Watkins J; Bandula S; Illing R; Davidson BR Int J Hyperthermia; 2018 Nov; 34(7):1114-1120. PubMed ID: 29096566 [TBL] [Abstract][Full Text] [Related]
9. Numerical study of the effect of blood vessel on the microwave ablation shape. Nie X; Nan Q; Guo X; Tian Z Biomed Mater Eng; 2015; 26 Suppl 1():S265-70. PubMed ID: 26406011 [TBL] [Abstract][Full Text] [Related]
10. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation. Al-Alem I; Pillai K; Akhter J; Chua TC; Morris DL Surg Innov; 2014 Jun; 21(3):269-76. PubMed ID: 24132470 [TBL] [Abstract][Full Text] [Related]
11. Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury. Whayne JG; Nath S; Haines DE Circulation; 1994 May; 89(5):2390-5. PubMed ID: 8181165 [TBL] [Abstract][Full Text] [Related]
12. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Curto S; Taj-Eldin M; Fairchild D; Prakash P Med Phys; 2015 Nov; 42(11):6152-61. PubMed ID: 26520708 [TBL] [Abstract][Full Text] [Related]
13. Subsequent cooling-circulation after radiofrequency and microwave ablation avoids secondary indirect damage induced by residual thermal energy. Shi X; Pan H; Ge H; Li L; Xu Y; Wang C; Xie H; Liu X; Zhou W; Wang S Diagn Interv Radiol; 2019 Jul; 25(4):291-297. PubMed ID: 31120427 [TBL] [Abstract][Full Text] [Related]
14. Hepatocellular carcinoma abutting large vessels: comparison of four percutaneous ablation systems. Loriaud A; Denys A; Seror O; Vietti Violi N; Digklia A; Duran R; Trillaud H; Hocquelet A Int J Hyperthermia; 2018 Dec; 34(8):1171-1178. PubMed ID: 29457510 [TBL] [Abstract][Full Text] [Related]
15. Mathematical study of the effects of different intrahepatic cooling on thermal ablation zones. Peng T; O'Neill D; Payne S Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6866-9. PubMed ID: 22255916 [TBL] [Abstract][Full Text] [Related]
16. Ultrasound monitoring of a novel microwave ablation (MWA) device in porcine liver: lessons learned and phenomena observed on ablative effects near major intrahepatic vessels. Garrean S; Hering J; Saied A; Hoopes PJ; Helton WS; Ryan TP; Espat NJ J Gastrointest Surg; 2009 Feb; 13(2):334-40. PubMed ID: 18937016 [TBL] [Abstract][Full Text] [Related]
17. Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: toward an improved numerical model. Brace CL Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():230-3. PubMed ID: 19162635 [TBL] [Abstract][Full Text] [Related]
18. Multipolar RFA of the liver: Influence of intrahepatic vessels on ablation zones and appropriateness of CECT in detecting ablation dimensions - Results of an in-vivo porcine liver model. Vahldiek JL; Erxleben C; Bressem KK; Gemeinhardt O; Poch F; Hiebl B; Lehmann KS; Hamm B; Niehues SM Clin Hemorheol Microcirc; 2018; 70(4):467-476. PubMed ID: 30347610 [TBL] [Abstract][Full Text] [Related]
20. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver. Andreano A; Brace CL Cardiovasc Intervent Radiol; 2013 Apr; 36(2):505-11. PubMed ID: 22572764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]