These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19965127)

  • 1. Display pixel-based synthetic aperture focusing method for intravascular ultrasound imaging.
    Kim S; Aglyamov SR; Emelianov SY
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():475-8. PubMed ID: 19965127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compounded direct pixel beamforming for medical ultrasound imaging.
    Lee Y; Lee WY; Lim CE; Chang JH; Song TK; Yoo Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):573-82. PubMed ID: 22481795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging.
    Li ML; Guan WJ; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):63-70. PubMed ID: 14995017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pixel based focusing for photoacoustic and ultrasound dual-modality imaging.
    Yoon C; Yoo Y; Song TK; Chang JH
    Ultrasonics; 2014 Dec; 54(8):2126-33. PubMed ID: 25014999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An implementation of synthetic aperture focusing technique in frequency domain.
    Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1399-408. PubMed ID: 17718329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging.
    Kang S; Lee J; Chang JH
    Ultrasonics; 2021 May; 113():106364. PubMed ID: 33517139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic aperture single-exposure on-axis digital holography.
    Martínez-León L; Javidi B
    Opt Express; 2008 Jan; 16(1):161-9. PubMed ID: 18521144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging.
    Lindsey BD; Martin KH; Jiang X; Dayton PA
    Ultrasonics; 2016 Aug; 70():123-35. PubMed ID: 27161022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aperture-domain processing and its applications in ultrasound imaging: a review.
    Wang SL; Li PC
    Proc Inst Mech Eng H; 2010; 224(2):143-54. PubMed ID: 20349812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudorandom phase masks for superresolution imaging from subpixel shifting.
    Ashok A; Neifeld MA
    Appl Opt; 2007 Apr; 46(12):2256-68. PubMed ID: 17415395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravascular Ultrasound Imaging With Virtual Source Synthetic Aperture Focusing and Coherence Factor Weighting.
    Yu M; Li Y; Ma T; Shung KK; Zhou Q
    IEEE Trans Med Imaging; 2017 Oct; 36(10):2171-2178. PubMed ID: 28692968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of coupled multichannel images using sparsity constraints.
    Ramakrishnan N; Ertin E; Moses RL
    IEEE Trans Image Process; 2010 Aug; 19(8):2115-26. PubMed ID: 20236892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iterative Image Reconstruction Improves the Accuracy of Automated Plaque Burden Assessment in Coronary CT Angiography: A Comparison With Intravascular Ultrasound.
    Puchner SB; Ferencik M; Maehara A; Stolzmann P; Ma S; Do S; Kauczor HU; Mintz GS; Hoffmann U; Schlett CL
    AJR Am J Roentgenol; 2017 Apr; 208(4):777-784. PubMed ID: 28177655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography.
    Mu Z; Liu YH
    IEEE Trans Med Imaging; 2006 Jun; 25(6):701-11. PubMed ID: 16768235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to compensate the geometric distortion in the synthetic aperture ultrasonic imaging system.
    He X; Liu W; Chen S; Qin Z
    Biomed Mater Eng; 2015; 26 Suppl 1():S1623-32. PubMed ID: 26405927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image thickness correction for navigation with 3D intra-cardiac ultrasound catheter.
    Zhong H; Kanade T; Schwartzman D
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):485-92. PubMed ID: 18982640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic aperture focusing for short-lag spatial coherence imaging.
    Bottenus N; Byram BC; Dahl JJ; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Sep; 60(9):1816-26. PubMed ID: 24658715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of pixel arrangements in various rhombuses for full-parallax three-dimensional image generation.
    Son JY; Saveljev VV; Kwack KD; Kim SK; Park MC
    Appl Opt; 2006 Apr; 45(12):2689-96. PubMed ID: 16633418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automatic method for assembling a large synthetic aperture digital hologram.
    Pelagotti A; Paturzo M; Locatelli M; Geltrude A; Meucci R; Finizio A; Ferraro P
    Opt Express; 2012 Feb; 20(5):4830-9. PubMed ID: 22418289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic non-rigid temporal alignment of intravascular ultrasound sequences: method and quantitative validation.
    Alberti M; Balocco S; Carrillo X; Mauri J; Radeva P
    Ultrasound Med Biol; 2013 Sep; 39(9):1698-712. PubMed ID: 23791349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.