These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19965183)

  • 1. Large-scale integrated model is useful for understanding heart mechanisms and developments of medical therapy.
    Washio T; Okada J; Sugiura S; Hisada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2347-50. PubMed ID: 19965183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale simulations of cardiac electrophysiology and mechanics using the University of Tokyo heart simulator.
    Sugiura S; Washio T; Hatano A; Okada J; Watanabe H; Hisada T
    Prog Biophys Mol Biol; 2012; 110(2-3):380-9. PubMed ID: 22828714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UT-Heart: A Finite Element Model Designed for the Multiscale and Multiphysics Integration of our Knowledge on the Human Heart.
    Sugiura S; Okada JI; Washio T; Hisada T
    Methods Mol Biol; 2022; 2399():221-245. PubMed ID: 35604559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and pharmacological application of multiscale multiphysics heart simulator, UT-Heart.
    Okada JI; Washio T; Sugiura S; Hisada T
    Korean J Physiol Pharmacol; 2019 Sep; 23(5):295-303. PubMed ID: 31496866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale finite element analysis of the beating heart.
    McCulloch A; Waldman L; Rogers J; Guccione J
    Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-referenced cardiovascular circulatory simulator: construction and control.
    Gwak KW
    Artif Organs; 2015 Apr; 39(4):309-18. PubMed ID: 25345617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of cardiac oxygen consumption under hypoxia with tissue model integrating microcirculation model and cell model.
    Amano A; Kubota Y; Shimayoshi T; Matsuda T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3885-8. PubMed ID: 19963606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical and physiological models for surgical simulation.
    Avis NJ; Briggs NM; Kleinermann F; Hose DR; Brown BH; Edwards MH
    Stud Health Technol Inform; 1999; 62():23-9. PubMed ID: 10538363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of channel blockers on cardiac alternans.
    Xia H; Zhao X; Bains J; Wortham DC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2823-6. PubMed ID: 19964269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical simulator of the cardiovascular system.
    Zannoli R; Corazza I; Branzi A
    Phys Med; 2009 Jun; 25(2):94-100. PubMed ID: 18439864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model order reduction for left ventricular mechanics via congruency training.
    Di Achille P; Parikh J; Khamzin S; Solovyova O; Kozloski J; Gurev V
    PLoS One; 2020; 15(1):e0219876. PubMed ID: 31905197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic modeling of the vascular system in the state-space.
    Monzon JE; Pisarello MI; Alvarez Picaza C; Veglia JI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2612-5. PubMed ID: 21096181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considerations for reporting finite element analysis studies in biomechanics.
    Erdemir A; Guess TM; Halloran J; Tadepalli SC; Morrison TM
    J Biomech; 2012 Feb; 45(4):625-33. PubMed ID: 22236526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [MOTRICO project: the mesh generation problem of the human left coronary artery bifurcation].
    Serón FJ; García E; del Pico J
    Acta Cient Venez; 2003; 54(1):28-35. PubMed ID: 14515764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation.
    May CP; Kolokotroni E; Stamatakos GS; Büchler P
    Prog Biophys Mol Biol; 2011 Oct; 107(1):193-9. PubMed ID: 21740923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms.
    Yang TH; Jo G; Koo JH; Woo SY; Kim JU; Kim YM
    Biomed Eng Online; 2019 Jan; 18(1):1. PubMed ID: 30602383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled electromechanical model of the heart: Parallel finite element formulation.
    Lafortune P; Arís R; Vázquez M; Houzeaux G
    Int J Numer Method Biomed Eng; 2012 Jan; 28(1):72-86. PubMed ID: 25830206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific finite element modeling of bones.
    Poelert S; Valstar E; Weinans H; Zadpoor AA
    Proc Inst Mech Eng H; 2013 Apr; 227(4):464-78. PubMed ID: 23637222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.