BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19965186)

  • 1. Simulation of erythrocyte deformation in a high shear flow.
    Nakamura M; Bessho S; Wada S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2358-61. PubMed ID: 19965186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of erythrocyte deformation induced by supraphysiological shear stress.
    Watanabe N; Shimada T; Hakozaki M; Hara R
    Int J Artif Organs; 2018 Dec; 41(12):838-844. PubMed ID: 30126305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.
    Hashemi Z; Rahnama M
    Int J Numer Method Biomed Eng; 2016 Nov; 32(11):. PubMed ID: 26729644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural alterations in red blood cell membranes exposed to shear stress.
    Mizuno T; Tsukiya T; Taenaka Y; Tatsumi E; Nishinaka T; Ohnishi H; Oshikawa M; Sato K; Shioya K; Takewa Y; Takano H
    ASAIO J; 2002; 48(6):668-70. PubMed ID: 12455781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.
    Ye SS; Ng YC; Tan J; Leo HL; Kim S
    Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red blood cell tolerance to shear stress above and below the subhemolytic threshold.
    Horobin JT; Sabapathy S; Simmonds MJ
    Biomech Model Mechanobiol; 2020 Jun; 19(3):851-860. PubMed ID: 31720887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of numerical methods for red blood cell flow simulation.
    Ju M; Ye SS; Namgung B; Cho S; Low HT; Leo HL; Kim S
    Comput Methods Biomech Biomed Engin; 2015; 18(2):130-40. PubMed ID: 23582050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear stress-induced improvement of red blood cell deformability.
    Meram E; Yilmaz BD; Bas C; Atac N; Yalcin O; Meiselman HJ; Baskurt OK
    Biorheology; 2013; 50(3-4):165-76. PubMed ID: 23863281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary.
    Ye T; Li H; Lam KY
    Microvasc Res; 2010 Dec; 80(3):453-63. PubMed ID: 20643152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle method for computer simulation of red blood cell motion in blood flow.
    Tsubota K; Wada S; Yamaguchi T
    Comput Methods Programs Biomed; 2006 Aug; 83(2):139-46. PubMed ID: 16879895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance.
    Robert M; Stauffer E; Nader E; Skinner S; Boisson C; Cibiel A; Feasson L; Renoux C; Robach P; Joly P; Millet GY; Connes P
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Red Blood Cell Model to Estimate the Hemolysis Fingerprint of Cardiovascular Devices.
    Toninato R; Fadda G; Susin FM
    Artif Organs; 2018 Jan; 42(1):58-67. PubMed ID: 28722138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress.
    Simmonds MJ; Atac N; Baskurt OK; Meiselman HJ; Yalcin O
    Biorheology; 2014; 51(2-3):171-85. PubMed ID: 24948378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.