These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19965229)

  • 1. Classification of localized muscle fatigue with genetic programming on sEMG during isometric contraction.
    Al-Mulla MR; Sepulveda F; Colley M; Kattan A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2633-8. PubMed ID: 19965229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel feature modelling the prediction and detection of sEMG muscle fatigue towards an automated wearable system.
    Al-Mulla MR; Sepulveda F
    Sensors (Basel); 2010; 10(5):4838-54. PubMed ID: 22399910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue.
    Al-Mulla MR; Sepulveda F; Colley M
    Med Eng Phys; 2011 May; 33(4):411-7. PubMed ID: 21256068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super wavelet for sEMG signal extraction during dynamic fatiguing contractions.
    Al-Mulla MR; Sepulveda F
    J Med Syst; 2015 Jan; 39(1):167. PubMed ID: 25526707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative approach in muscle fatigue evaluation from the surface EMG signal.
    Garcia MA; Catunda JM; Lemos T; Oliveira LF; Imbiriba LA; Souza MN
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2419-22. PubMed ID: 21095697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage binary classifier for neuromuscular disorders using surface electromyography feature extraction and selection.
    Lee JW; Shin MJ; Jang MH; Jeong WB; Ahn SJ
    Med Eng Phys; 2021 Dec; 98():65-72. PubMed ID: 34848040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Surface Electromyography to Measure Muscle Fatigue in Patients in an Acute Care Hospital.
    Skrzat JM; Carp SJ; Dai T; Lauer R; Hiremath SV; Gaeckle N; Tucker CA
    Phys Ther; 2020 Jun; 100(6):897-906. PubMed ID: 32157308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of high and low sEMG spectral components during sustained isometric contraction.
    Costa-García Á; Iáñez E; Yokoyama M; Ueda S; Okajima S; Shimoda S
    Physiol Rep; 2022 May; 10(10):e15296. PubMed ID: 35614546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative muscle study fatigue with sEMG signals during the isotonic and isometric tasks for diagnostics purposes.
    Sarmiento JF; Benevides AB; Moreira MH; Elias A; Bastos TF; Silva IV; Pelegrina CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7163-6. PubMed ID: 22255990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wireless sEMG recording system and its application to muscle fatigue detection.
    Chang KM; Liu SH; Wu XH
    Sensors (Basel); 2012; 12(1):489-99. PubMed ID: 22368481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Relationship between surface electromyographic signal (sEMG) changes and subjective assessment of muscle fatigue during isometric contractions].
    Wang DM; Wang J; Ge LZ
    Space Med Med Eng (Beijing); 2004 Jun; 17(3):201-4. PubMed ID: 15920848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of higher order statistics to surface electromyogram signal classification.
    Nazarpour K; Sharafat AR; Firoozabadi SM
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1762-9. PubMed ID: 17926674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological characteristics of motor units in the brachioradialis muscle across fatiguing low-level isometric contractions.
    Calder KM; Stashuk DW; McLean L
    J Electromyogr Kinesiol; 2008 Feb; 18(1):2-15. PubMed ID: 17113787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the Use of a Low-Cost sEMG Sensor Valid to Measure Muscle Fatigue?
    Toro SFD; Santos-Cuadros S; Olmeda E; Álvarez-Caldas C; Díaz V; San Román JL
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between Isometric Muscle Force and Fractal Dimension of Surface Electromyogram.
    Beretta-Piccoli M; Boccia G; Ponti T; Clijsen R; Barbero M; Cescon C
    Biomed Res Int; 2018; 2018():5373846. PubMed ID: 29736393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computerized electrophysiological evaluation of muscular fatigue.
    Bastos LL; Sobrinho JM; Yamamoto JF
    Electromyogr Clin Neurophysiol; 1999 Dec; 39(8):451-4. PubMed ID: 10627928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [sEMG signal change characteristics during the short period of recovery after muscular fatigue with isometric contractions].
    Ye W; Wang J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2005 May; 21(2):216-9. PubMed ID: 21171347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.