BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19965236)

  • 41. A low-power asynchronous ECG acquisition system in CMOS technology.
    Hwang S; Trakimas M; Sonkusale S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5262-5. PubMed ID: 21096052
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.
    Penders J; Pop V; Caballero L; van de Molengraft J; van Schaijk R; Vullers R; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2017-20. PubMed ID: 21097219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.
    Liu X; Zheng YJ; Phyu MW; Zhao B; Je M; Yuan XJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2577-80. PubMed ID: 21096174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.
    Farshchi S; Pesterev A; Nuyujukian PH; Mody I; Judy JW
    IEEE Trans Inf Technol Biomed; 2007 Nov; 11(6):611-8. PubMed ID: 18046936
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A 13.56-mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission.
    Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2015 Feb; 9(1):1-11. PubMed ID: 24760945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-power analog integrated circuits for wireless ECG acquisition systems.
    Tsai TH; Hong JH; Wang LH; Lee SY
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):907-17. PubMed ID: 22374371
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design of a wearable bio-patch for monitoring patient's temperature.
    Vicente JM; Avila-Navarro E; Juan CG; Garcia N; Sabater-Navarro JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4792-4795. PubMed ID: 28269342
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ActimedARM - design of a wearable system to monitor daily actimetry.
    Noury N; Perriot B; Collet J; Grenier E; Cerny M; Massot B; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1851-4. PubMed ID: 24110071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A study of MAC protocols for WBANs.
    Ullah S; Shen B; Islam SM; Khan P; Saleem S; Kwak KS
    Sensors (Basel); 2010; 10(1):128-45. PubMed ID: 22315531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC.
    Tan J; Liew WS; Heng CH; Lian Y
    IEEE Trans Biomed Circuits Syst; 2014 Aug; 8(4):497-509. PubMed ID: 25073126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-time daily activity classification with wireless sensor networks using Hidden Markov Model.
    He J; Li H; Tan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3192-5. PubMed ID: 18002674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Miniaturization of implantable wireless power receiver.
    Poon AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3217-20. PubMed ID: 19964059
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wearable wireless telemetry system for implantable bio-MEMS sensors.
    Simons RN; Miranda FA; Wilson JD; Simons RE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6245-8. PubMed ID: 17946365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Low-power ultrawideband wireless telemetry transceiver for medical sensor applications.
    Gao Y; Zheng Y; Diao S; Toh WD; Ang CW; Je M; Heng CH
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):768-72. PubMed ID: 21138797
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel solution to power problems in implanted biosensor networks.
    Guo T; Zhang L; Liu W; Zhou Z
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5952-5. PubMed ID: 17945924
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wireless design of a multisensor system for physical activity monitoring.
    Mo L; Liu S; Gao RX; John D; Staudenmayer JW; Freedson PS
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3230-7. PubMed ID: 23086196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A system-on-chip digital pH meter for use in a wireless diagnostic capsule.
    Hammond PA; Ali D; Cumming DR
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):687-94. PubMed ID: 15825870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A configurable IC for wireless real-time in vivo monitoring of chemical and electrical neural activity.
    Roham M; Blaha CD; Garris PA; Lee KH; Mohseni P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4222-5. PubMed ID: 19963812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An implantable telemetry platform system for in vivo monitoring of physiological parameters.
    Valdastri P; Menciassi A; Arena A; Caccamo C; Dario P
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):271-8. PubMed ID: 15484432
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wireless Body Sensor Network for low-power motion-tolerant synchronized vital sign measurement.
    Volmer A; Orglmeister R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3422-5. PubMed ID: 19163444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.