BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 19965266)

  • 1. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
    Cogan SF; Ehrlich J; Plante TD; Van Wagenen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical characteristics of ultramicro-dimensioned SIROF electrodes for neural stimulation and recording.
    Ghazavi A; Maeng J; Black M; Salvi S; Cogan SF
    J Neural Eng; 2020 Jan; 17(1):016022. PubMed ID: 31665712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sputtered iridium oxide films for neural stimulation electrodes.
    Cogan SF; Ehrlich J; Plante TD; Smirnov A; Shire DB; Gingerich M; Rizzo JF
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):353-361. PubMed ID: 18837458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.
    Kane SR; Cogan SF; Ehrlich J; Plante TD; McCreery DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5416-9. PubMed ID: 22255562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.
    Kane SR; Cogan SF; Ehrlich J; Plante TD; McCreery DB; Troyk PR
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2153-60. PubMed ID: 23475329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent.
    Maeng J; Chakraborty B; Geramifard N; Kang T; Rihani RT; Joshi-Imre A; Cogan SF
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):880-891. PubMed ID: 31353822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge injection characteristics of sputtered ruthenium oxide electrodes for neural stimulation and recording.
    Chakraborty B; Joshi-Imre A; Cogan SF
    J Biomed Mater Res B Appl Biomater; 2022 Jan; 110(1):229-238. PubMed ID: 34259381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes.
    Cogan SF; Plante TD; Ehrlich J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4153-6. PubMed ID: 17271216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of oxygen reduction to charge injection on platinum and sputtered iridium oxide neural stimulation electrodes.
    Cogan SF; Ehrlich J; Plante TD; Gingerich MD; Shire DB
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2313-21. PubMed ID: 20515708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sputtered Ruthenium Oxide Neural Stimulation Electrodes
    Chakraborty B; Joshi-Imre A; Cogan SF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6655-6658. PubMed ID: 34892634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sputtered ruthenium oxide coatings for neural stimulation and recording electrodes.
    Chakraborty B; Joshi-Imre A; Maeng J; Cogan SF
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):643-653. PubMed ID: 32945088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays.
    Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM
    Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic recording and electrochemical performance of amorphous silicon carbide-coated Utah electrode arrays implanted in rat motor cortex.
    Joshi-Imre A; Black BJ; Abbott J; Kanneganti A; Rihani R; Chakraborty B; Danda VR; Maeng J; Sharma R; Rieth L; Negi S; Pancrazio JJ; Cogan SF
    J Neural Eng; 2019 Aug; 16(4):046006. PubMed ID: 31013489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
    Negi S; Bhandari R; Rieth L; Van Wagenen R; Solzbacher F
    J Neurosci Methods; 2010 Jan; 186(1):8-17. PubMed ID: 19878693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of electrode geometry on electrochemical properties measured in saline.
    Cogan SF; Ehrlich J; Plante TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6850-3. PubMed ID: 25571570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes.
    Cogan SF
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():882-5. PubMed ID: 17946868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro comparison of the charge-injection limits of activated iridium oxide (AIROF) and platinum-iridium microelectrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1612-4. PubMed ID: 16189975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.