BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 19965432)

  • 41. Specific changes in total and mitochondrial proteomes are associated with higher levels of heterosis in maize hybrids.
    Dahal D; Mooney BP; Newton KJ
    Plant J; 2012 Oct; 72(1):70-83. PubMed ID: 22607058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm.
    Guo M; Rupe MA; Danilevskaya ON; Yang X; Hu Z
    Plant J; 2003 Oct; 36(1):30-44. PubMed ID: 12974809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The transcriptome analysis of barley (Hordeum vulgare L.) using the Affymetrix Barley1 GeneChip].
    Potokina EK; Druka A; Luo Z; Waugh R; Kearsey MJ
    Genetika; 2009 Nov; 45(11):1493-505. PubMed ID: 20058796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global transcriptional profiling between inbred parents and hybrids provides comprehensive insights into ear-length heterosis of maize (Zea mays).
    Zhang X; Ma C; Wang X; Wu M; Shao J; Huang L; Yuan L; Fu Z; Li W; Zhang X; Guo Z; Tang J
    BMC Plant Biol; 2021 Feb; 21(1):118. PubMed ID: 33637040
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant science. Solving the maze.
    Feuillet C; Eversole K
    Science; 2009 Nov; 326(5956):1071-2. PubMed ID: 19965417
    [No Abstract]   [Full Text] [Related]  

  • 46. Nonadditive gene expression in diploid and triploid hybrids of maize.
    Auger DL; Gray AD; Ream TS; Kato A; Coe EH; Birchler JA
    Genetics; 2005 Jan; 169(1):389-97. PubMed ID: 15489529
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptome profiling and comparison of maize ear heterosis during the spikelet and floret differentiation stages.
    Hu X; Wang H; Diao X; Liu Z; Li K; Wu Y; Liang Q; Wang H; Huang C
    BMC Genomics; 2016 Nov; 17(1):959. PubMed ID: 27875998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of artificial selection on the maize genome.
    Wright SI; Bi IV; Schroeder SG; Yamasaki M; Doebley JF; McMullen MD; Gaut BS
    Science; 2005 May; 308(5726):1310-4. PubMed ID: 15919994
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid.
    Kirst M; Basten CJ; Myburg AA; Zeng ZB; Sederoff RR
    Genetics; 2005 Apr; 169(4):2295-303. PubMed ID: 15687266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.
    Qing DJ; Lu HF; Li N; Dong HT; Dong DF; Li YZ
    Plant Cell Physiol; 2009 Apr; 50(4):889-903. PubMed ID: 19264788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Predictive potential of DNA markers in heterosis breeding of maize].
    Kozhukhova NE; Varenik BF; Sivolap IuM
    Tsitol Genet; 2005; 39(1):14-20. PubMed ID: 16018173
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined transcriptome and metabolome analysis reveals the effects of light quality on maize hybrids.
    Zhan W; Guo G; Cui L; Rashid MAR; Jiang L; Sun G; Yang J; Zhang Y
    BMC Plant Biol; 2023 Jan; 23(1):41. PubMed ID: 36653749
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression QTL and regulatory network analysis of microtubule-associated protein tau gene.
    Shen Q; Wang X; Chen Y; Xu L; Wang X; Lu L
    Parkinsonism Relat Disord; 2009 Aug; 15(7):525-31. PubMed ID: 19233709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection and interpretation of expression quantitative trait loci (eQTL).
    Michaelson JJ; Loguercio S; Beyer A
    Methods; 2009 Jul; 48(3):265-76. PubMed ID: 19303049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids.
    Zhang HY; He H; Chen LB; Li L; Liang MZ; Wang XF; Liu XG; He GM; Chen RS; Ma LG; Deng XW
    Mol Plant; 2008 Sep; 1(5):720-31. PubMed ID: 19825576
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonadditive protein accumulation patterns in Maize (Zea mays L.) hybrids during embryo development.
    Marcon C; Schützenmeister A; Schütz W; Madlung J; Piepho HP; Hochholdinger F
    J Proteome Res; 2010 Dec; 9(12):6511-22. PubMed ID: 20973536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and characterization of a repertoire of genes differentially expressed in developing top ear shoots between a superior hybrid and its parental inbreds in Zea mays L.
    Qin J; Scheuring CF; Wei G; Zhi H; Zhang M; Huang JJ; Zhou X; Galbraith DW; Zhang HB
    Mol Genet Genomics; 2013 Dec; 288(12):691-705. PubMed ID: 24146224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
    Calderon-Vazquez C; Ibarra-Laclette E; Caballero-Perez J; Herrera-Estrella L
    J Exp Bot; 2008; 59(9):2479-97. PubMed ID: 18503042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative proteomic analysis reveals that the Heterosis of two maize hybrids is related to enhancement of stress response and photosynthesis respectively.
    Wang D; Mu Y; Hu X; Ma B; Wang Z; Zhu L; Xu J; Huang C; Pan Y
    BMC Plant Biol; 2021 Jan; 21(1):34. PubMed ID: 33422018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize.
    Song Y; Zhang Z; Tan X; Jiang Y; Gao J; Lin L; Wang Z; Ren J; Wang X; Qin L; Cheng W; Qi J; Kuai B
    Sci Rep; 2016 Jul; 6():29843. PubMed ID: 27435114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.