These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 19966028)
41. A consensus sequence for the Rhodospirillaceae SOS operators. Labazi M; del Rey A; Fernandez de Henestrosa AR; Barbé J FEMS Microbiol Lett; 1999 Feb; 171(1):37-42. PubMed ID: 9987839 [TBL] [Abstract][Full Text] [Related]
42. A mutation in a Rhodobacter capsulatus gene encoding an integration host factor-like protein impairs in vivo hydrogenase expression. Toussaint B; Bosc C; Richaud P; Colbeau A; Vignais PM Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10749-53. PubMed ID: 1961742 [TBL] [Abstract][Full Text] [Related]
43. Expression of regulatory nif genes in Rhodobacter capsulatus. Hübner P; Willison JC; Vignais PM; Bickle TA J Bacteriol; 1991 May; 173(9):2993-9. PubMed ID: 1902215 [TBL] [Abstract][Full Text] [Related]
44. The puhE gene of Rhodobacter capsulatus is needed for optimal transition from aerobic to photosynthetic growth and encodes a putative negative modulator of bacteriochlorophyll production. Aklujkar M; Prince RC; Beatty JT Arch Biochem Biophys; 2005 May; 437(2):186-98. PubMed ID: 15850558 [TBL] [Abstract][Full Text] [Related]
45. The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants. Deshmukh M; Turkarslan S; Astor D; Valkova-Valchanova M; Daldal F J Bacteriol; 2003 Jun; 185(11):3361-72. PubMed ID: 12754234 [TBL] [Abstract][Full Text] [Related]
46. Isolation and characterization of Rhodobacter capsulatus mutants affected in cytochrome cbb3 oxidase activity. Koch HG; Hwang O; Daldal F J Bacteriol; 1998 Feb; 180(4):969-78. PubMed ID: 9473054 [TBL] [Abstract][Full Text] [Related]
47. The arsenical ATPase efflux pump mediates tellurite resistance. Turner RJ; Hou Y; Weiner JH; Taylor DE J Bacteriol; 1992 May; 174(9):3092-4. PubMed ID: 1533216 [TBL] [Abstract][Full Text] [Related]
48. Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. Lindenstrauss U; Brüser T J Bacteriol; 2006 Nov; 188(22):7807-14. PubMed ID: 16980457 [TBL] [Abstract][Full Text] [Related]
49. Induction of Ding H; Grüll MP; Mulligan ME; Lang AS; Beatty JT J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31501287 [TBL] [Abstract][Full Text] [Related]
50. Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of sigma54, and repressed by molybdenum. Kutsche M; Leimkühler S; Angermüller S; Klipp W J Bacteriol; 1996 Apr; 178(7):2010-7. PubMed ID: 8606177 [TBL] [Abstract][Full Text] [Related]
51. Purification and in vitro phosphorylation of HupT, a regulatory protein controlling hydrogenase gene expression in Rhodobacter capsulatus. Elsen S; Colbeau A; Vignais PM J Bacteriol; 1997 Feb; 179(3):968-71. PubMed ID: 9006058 [TBL] [Abstract][Full Text] [Related]
52. Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli: a model for the mechanism of resistance. Lloyd-Jones G; Osborn AM; Ritchie DA; Strike P; Hobman JL; Brown NL; Rouch DA FEMS Microbiol Lett; 1994 May; 118(1-2):113-9. PubMed ID: 8013866 [TBL] [Abstract][Full Text] [Related]
53. Differences in codon usage among genes encoding proteins of different function in Rhodobacter capsulatus. Wu LF; Saier MH Res Microbiol; 1991; 142(9):943-9. PubMed ID: 1805308 [TBL] [Abstract][Full Text] [Related]
54. The AppA and PpsR proteins from Rhodobacter sphaeroides can establish a redox-dependent signal chain but fail to transmit blue-light signals in other bacteria. Jäger A; Braatsch S; Haberzettl K; Metz S; Osterloh L; Han Y; Klug G J Bacteriol; 2007 Mar; 189(6):2274-82. PubMed ID: 17209035 [TBL] [Abstract][Full Text] [Related]
55. Molybdate-dependent expression of dimethylsulfoxide reductase in Rhodobacter capsulatus. Solomon PS; Shaw AL; Young MD; Leimkuhler S; Hanson GR; Klipp W; McEwan AG FEMS Microbiol Lett; 2000 Sep; 190(2):203-8. PubMed ID: 11034280 [TBL] [Abstract][Full Text] [Related]
56. Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus. Jäger S; Evguenieva-Hackenberg E; Klug G Microbiology (Reading); 2004 Mar; 150(Pt 3):687-695. PubMed ID: 14993318 [TBL] [Abstract][Full Text] [Related]
57. Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus. Buggy J; Bauer CE J Bacteriol; 1995 Dec; 177(23):6958-65. PubMed ID: 7592491 [TBL] [Abstract][Full Text] [Related]
58. Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence. Wu LF; Saier MH J Bacteriol; 1990 Dec; 172(12):7167-78. PubMed ID: 2254279 [TBL] [Abstract][Full Text] [Related]
59. Nucleotide sequence and transcriptional analysis of the flanking region of the gene (spb) for the trans-acting factor that controls light-mediated expression of the puf operon in Rhodobacter sphaeroides. Mizoguchi H; Masuda T; Nishimura K; Shimada H; Ohta H; Shioi Y; Takamiya K Plant Cell Physiol; 1997 May; 38(5):558-67. PubMed ID: 9210332 [TBL] [Abstract][Full Text] [Related]
60. Identification and sequence analysis of the hupR1 gene, which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus. Richaud P; Colbeau A; Toussaint B; Vignais PM J Bacteriol; 1991 Sep; 173(18):5928-32. PubMed ID: 1885559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]