BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19966029)

  • 1. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility.
    Stoecker K; Dorninger C; Daims H; Wagner M
    Appl Environ Microbiol; 2010 Feb; 76(3):922-6. PubMed ID: 19966029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes.
    Fuchs BM; Wallner G; Beisker W; Schwippl I; Ludwig W; Amann R
    Appl Environ Microbiol; 1998 Dec; 64(12):4973-82. PubMed ID: 9835591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides.
    Yilmaz LS; Okten HE; Noguera DR
    Appl Environ Microbiol; 2006 Jan; 72(1):733-44. PubMed ID: 16391113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ accessibility of Saccharomyces cerevisiae 26S rRNA to Cy3-labeled oligonucleotide probes comprising the D1 and D2 domains.
    Inácio J; Behrens S; Fuchs BM; Fonseca A; Spencer-Martins I; Amann R
    Appl Environ Microbiol; 2003 May; 69(5):2899-905. PubMed ID: 12732564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes.
    Fuchs BM; Glöckner FO; Wulf J; Amann R
    Appl Environ Microbiol; 2000 Aug; 66(8):3603-7. PubMed ID: 10919826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of nucleobase-specific fluorescence quenching on in situ hybridization with rRNA-targeted oligonucleotide probes.
    Behrens S; Fuchs BM; Amann R
    Syst Appl Microbiol; 2004 Sep; 27(5):565-72. PubMed ID: 15490558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes.
    Behrens S; Rühland C; Inácio J; Huber H; Fonseca A; Spencer-Martins I; Fuchs BM; Amann R
    Appl Environ Microbiol; 2003 Mar; 69(3):1748-58. PubMed ID: 12620867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes.
    Fuchs BM; Syutsubo K; Ludwig W; Amann R
    Appl Environ Microbiol; 2001 Feb; 67(2):961-8. PubMed ID: 11157269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphical representation of ribosomal RNA probe accessibility data using ARB software package.
    Kumar Y; Westram R; Behrens S; Fuchs B; Glöckner FO; Amann R; Meier H; Ludwig W
    BMC Bioinformatics; 2005 Mar; 6():61. PubMed ID: 15777482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH.
    Hoshino T; Yilmaz LS; Noguera DR; Daims H; Wagner M
    Appl Environ Microbiol; 2008 Aug; 74(16):5068-77. PubMed ID: 18552182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential sensitivity of 16S rRNA targeted oligonucleotide probes used for fluorescence in situ hybridization is a result of ribosomal higher order structure.
    Frischer ME; Floriani PJ; Nierzwicki-Bauer SA
    Can J Microbiol; 1996 Oct; 42(10):1061-71. PubMed ID: 8890483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A straightforward DOPE (double labeling of oligonucleotide probes)-FISH (fluorescence in situ hybridization) method for simultaneous multicolor detection of six microbial populations.
    Behnam F; Vilcinskas A; Wagner M; Stoecker K
    Appl Environ Microbiol; 2012 Aug; 78(15):5138-42. PubMed ID: 22582069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ identification of symbiotic dinoflagellates, the genus Symbiodinium with fluorescence-labeled rRNA-targeted oligonucleotide probes.
    Yokouchi H; Takeyama H; Miyashita H; Maruyama T; Matsunaga T
    J Microbiol Methods; 2003 Jun; 53(3):327-34. PubMed ID: 12689710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-temperature fluorescent in situ hybridization for detecting Escherichia coli in seawater samples, using rRNA-targeted oligonucleotide probes and flow cytometry.
    Tang YZ; Gin KY; Lim TH
    Appl Environ Microbiol; 2005 Dec; 71(12):8157-64. PubMed ID: 16332798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.
    Amann RI; Binder BJ; Olson RJ; Chisholm SW; Devereux R; Stahl DA
    Appl Environ Microbiol; 1990 Jun; 56(6):1919-25. PubMed ID: 2200342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence in situ hybridization with 18S rRNA targeted oligonucleotide probes.
    Fried J; Foissner W
    J Eukaryot Microbiol; 2007; 54(4):381-7. PubMed ID: 17669165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes.
    Schuppler M; Wagner M; Schön G; Göbel UB
    Microbiology (Reading); 1998 Jan; 144 ( Pt 1)():249-259. PubMed ID: 9467916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. probeBase: an online resource for rRNA-targeted oligonucleotide probes.
    Loy A; Horn M; Wagner M
    Nucleic Acids Res; 2003 Jan; 31(1):514-6. PubMed ID: 12520066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of a ribosomal RNA targeted oligonucleotide probe for fluorescent labelling of viable Cryptosporidium parvum oocysts.
    Vesey G; Ashbolt N; Fricker EJ; Deere D; Williams KL; Veal DA; Dorsch M
    J Appl Microbiol; 1998 Sep; 85(3):429-40. PubMed ID: 9750273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the in situ accessibility of the 16S rRNA of Escherichia coli for Cy3-labeled oligonucleotide probes predicted by a three-dimensional structure model of the 30S ribosomal subunit?
    Behrens S; Fuchs BM; Mueller F; Amann R
    Appl Environ Microbiol; 2003 Aug; 69(8):4935-41. PubMed ID: 12902289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.