BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19966061)

  • 1. Intercellular calcium waves are associated with the propagation of vasomotion along arterial strips.
    Seppey D; Sauser R; Koenigsberger M; Bény JL; Meister JJ
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H488-96. PubMed ID: 19966061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of smooth muscle cells and arterial vasomotion.
    Lamboley M; Schuster A; Bény JL; Meister JJ
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H562-9. PubMed ID: 12574002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth muscle gap-junctions allow propagation of intercellular Ca
    Borysova L; Dora KA; Garland CJ; Burdyga T
    Cell Calcium; 2018 Nov; 75():21-29. PubMed ID: 30114532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the endothelium abolish or promote arterial vasomotion in rat mesenteric arteries? Explanations for the seemingly contradictory effects.
    Seppey D; Sauser R; Koenigsberger M; Bény JL; Meister JJ
    J Vasc Res; 2008; 45(5):416-26. PubMed ID: 18401180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of U46619-, endothelin-1- or phenylephrine-induced changes in cellular Ca2+ profiles and Ca2+ sensitisation of constriction of pressurised rat resistance arteries.
    Shaw L; O'Neill S; Jones CJ; Austin C; Taggart MJ
    Br J Pharmacol; 2004 Feb; 141(4):678-88. PubMed ID: 14744813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of propagation of intercellular calcium waves in arterial smooth muscle cells.
    Koenigsberger M; Seppey D; Bény JL; Meister JJ
    Biophys J; 2010 Jul; 99(2):333-43. PubMed ID: 20643050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of smooth muscle gap junctions attenuates myogenic vasoconstriction of mesenteric resistance arteries.
    Earley S; Resta TC; Walker BR
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2677-86. PubMed ID: 15319213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of fast and slow intercellular Ca(2+) waves in primary cultured arterial smooth muscle cells.
    Halidi N; Boittin FX; Bény JL; Meister JJ
    Cell Calcium; 2011 Nov; 50(5):459-67. PubMed ID: 21920600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different roles of ryanodine receptors and inositol (1,4,5)-trisphosphate receptors in adrenergically stimulated contractions of small arteries.
    Lamont C; Wier WG
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H617-25. PubMed ID: 15072954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries.
    Mauban JR; Wier WG
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H608-16. PubMed ID: 15059779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg2+ blocks myogenic tone but not K+-induced constriction: role for SOCs in small arteries.
    Zhang J; Wier WG; Blaustein MP
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2692-705. PubMed ID: 12388301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vasomotion dynamics following calcium spiking depend on both cell signalling and limited constriction velocity in rat mesenteric small arteries.
    VanBavel E; van der Meulen ET; Spaan JA
    J Cell Mol Med; 2008 Jun; 12(3):899-913. PubMed ID: 18494932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries.
    Wesselman JP; VanBavel E; Pfaffendorf M; Spaan JA
    J Vasc Res; 1996; 33(1):32-41. PubMed ID: 8603124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous arterial calcium dynamics and diameter measurements: application to myoendothelial communication.
    Schuster A; Oishi H; Bény JL; Stergiopulos N; Meister JJ
    Am J Physiol Heart Circ Physiol; 2001 Mar; 280(3):H1088-96. PubMed ID: 11179051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase resetting of arterial vasomotion by burst stimulation of perivascular nerves.
    Borovik A; Golubinskaya V; Tarasova O; Aalkjaer C; Nilsson H
    J Vasc Res; 2005; 42(2):165-73. PubMed ID: 15767763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothesis for the initiation of vasomotion.
    Peng H; Matchkov V; Ivarsen A; Aalkjaer C; Nilsson H
    Circ Res; 2001 Apr; 88(8):810-5. PubMed ID: 11325873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of calcium channels and endothelial factors in nickel induced aortic hypercontraction in Wistar rats.
    Wani SA; Khan LA; Basir SF
    J Smooth Muscle Res; 2018; 54(0):71-82. PubMed ID: 30210089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Ca2+ wave in cultured vascular smooth muscle cells aligned on a micropatterned surface.
    Quijano JC; Vianay B; Bény JL; Meister JJ
    Cell Calcium; 2013 Dec; 54(6):436-45. PubMed ID: 24183802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40.
    Haddock RE; Grayson TH; Brackenbury TD; Meaney KR; Neylon CB; Sandow SL; Hill CE
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2047-56. PubMed ID: 16815985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.