These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19966270)

  • 1. Selection of bacteriophage lambda integrases with altered recombination specificity by in vitro compartmentalization.
    Tay Y; Ho C; Droge P; Ghadessy FJ
    Nucleic Acids Res; 2010 Mar; 38(4):e25. PubMed ID: 19966270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-specific recombination in eukaryotic cells mediated by mutant lambda integrases: implications for synaptic complex formation and the reactivity of episomal DNA segments.
    Christ N; Corona T; Dröge P
    J Mol Biol; 2002 May; 319(2):305-14. PubMed ID: 12051908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of λ integrase activity and specificity by genetic derepression.
    Siau JW; Chee S; Makhija H; Wai CM; Chandra SH; Peter S; Dröge P; Ghadessy FJ
    Protein Eng Des Sel; 2015 Jul; 28(7):211-20. PubMed ID: 25787692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity determinants for bacteriophage Hong Kong 022 integrase: analysis of mutants with relaxed core-binding specificities.
    Cheng Q; Swalla BM; Beck M; Alcaraz R; Gumport RI; Gardner JF
    Mol Microbiol; 2000 Apr; 36(2):424-36. PubMed ID: 10792728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying determinants of recombination specificity: construction and characterization of mutant bacteriophage integrases.
    Dorgai L; Yagil E; Weisberg RA
    J Mol Biol; 1995 Sep; 252(2):178-88. PubMed ID: 7674300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-binding specificity of bacteriophage integrases.
    Gottfried P; Yagil E; Kolot M
    Mol Gen Genet; 2000 May; 263(4):619-24. PubMed ID: 10852483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying determinants of recombination specificity: construction and characterization of chimeric bacteriophage integrases.
    Yagil E; Dorgai L; Weisberg RA
    J Mol Biol; 1995 Sep; 252(2):163-77. PubMed ID: 7674299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of core binding sites by bacteriophage integrases.
    Dorgai L; Sloan S; Weisberg RA
    J Mol Biol; 1998 Apr; 277(5):1059-70. PubMed ID: 9571022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations at residues 282, 286, and 293 of phage lambda integrase exert pathway-specific effects on synapsis and catalysis in recombination.
    Bankhead TM; Etzel BJ; Wolven F; Bordenave S; Boldt JL; Larsen TA; Segall AM
    J Bacteriol; 2003 Apr; 185(8):2653-66. PubMed ID: 12670991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The amino terminus of bacteriophage lambda integrase is involved in protein-protein interactions during recombination.
    Jessop L; Bankhead T; Wong D; Segall AM
    J Bacteriol; 2000 Feb; 182(4):1024-34. PubMed ID: 10648529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of secondary attachment sites in changing the specificity of site-specific recombination.
    Rutkai E; György A; Dorgai L; Weisberg RA
    J Bacteriol; 2006 May; 188(9):3409-11. PubMed ID: 16621836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trans cooperativity by a split DNA recombinase: the central and catalytic domains of bacteriophage lambda integrase cooperate in cleaving DNA substrates when the two domains are not covalently linked.
    Subramaniam S; Kamadurai HB; Foster MP
    J Mol Biol; 2007 Jul; 370(2):303-14. PubMed ID: 17531268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexibility in DNA recombination: structure of the lambda integrase catalytic core.
    Kwon HJ; Tirumalai R; Landy A; Ellenberger T
    Science; 1997 Apr; 276(5309):126-31. PubMed ID: 9082984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biotin interference assay highlights two different asymmetric interaction profiles for lambda integrase arm-type binding sites in integrative versus excisive recombination.
    Hazelbaker D; Azaro MA; Landy A
    J Biol Chem; 2008 May; 283(18):12402-14. PubMed ID: 18319248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino-terminal domain interactions of lambda integrase on arm-type DNA.
    Lee SY
    Biochem Biophys Res Commun; 2008 Nov; 376(1):139-42. PubMed ID: 18765228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of directionality in bacteriophage lambda site-specific recombination: structure of the Xis protein.
    Sam MD; Papagiannis CV; Connolly KM; Corselli L; Iwahara J; Lee J; Phillips M; Wojciak JM; Johnson RC; Clubb RT
    J Mol Biol; 2002 Dec; 324(4):791-805. PubMed ID: 12460578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topology of Xer recombination on catenanes produced by lambda integrase.
    Bath J; Sherratt DJ; Colloms SD
    J Mol Biol; 1999 Jun; 289(4):873-83. PubMed ID: 10369768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural basis for allosteric control of DNA recombination by lambda integrase.
    Biswas T; Aihara H; Radman-Livaja M; Filman D; Landy A; Ellenberger T
    Nature; 2005 Jun; 435(7045):1059-66. PubMed ID: 15973401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical amino acid residues within the φC31 integrase DNA-binding domain affect recombination activities in mammalian cells.
    Liesner R; Zhang W; Noske N; Ehrhardt A
    Hum Gene Ther; 2010 Sep; 21(9):1104-18. PubMed ID: 20415519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential affinity and cooperativity functions of the amino-terminal 70 residues of lambda integrase.
    Sarkar D; Azaro MA; Aihara H; Papagiannis CV; Tirumalai R; Nunes-Düby SE; Johnson RC; Ellenberger T; Landy A
    J Mol Biol; 2002 Dec; 324(4):775-89. PubMed ID: 12460577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.