BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 19966280)

  • 21. Measuring Genome-Wide Nascent Nucleosome Assembly Using ReIN-Map.
    Xu Z; Feng J; Li Q
    Methods Mol Biol; 2021; 2196():117-141. PubMed ID: 32889717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chromatin structure-based model accurately predicts DNA replication timing in human cells.
    Gindin Y; Valenzuela MS; Aladjem MI; Meltzer PS; Bilke S
    Mol Syst Biol; 2014 Mar; 10(3):722. PubMed ID: 24682507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq.
    Marchal C; Sasaki T; Vera D; Wilson K; Sima J; Rivera-Mulia JC; Trevilla-García C; Nogues C; Nafie E; Gilbert DM
    Nat Protoc; 2018 May; 13(5):819-839. PubMed ID: 29599440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replication fork polarity gradients revealed by megabase-sized U-shaped replication timing domains in human cell lines.
    Baker A; Audit B; Chen CL; Moindrot B; Leleu A; Guilbaud G; Rappailles A; Vaillant C; Goldar A; Mongelard F; d'Aubenton-Carafa Y; Hyrien O; Thermes C; Arneodo A
    PLoS Comput Biol; 2012; 8(4):e1002443. PubMed ID: 22496629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-cell chromatin accessibility reveals principles of regulatory variation.
    Buenrostro JD; Wu B; Litzenburger UM; Ruff D; Gonzales ML; Snyder MP; Chang HY; Greenleaf WJ
    Nature; 2015 Jul; 523(7561):486-90. PubMed ID: 26083756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.
    Farkash-Amar S; David Y; Polten A; Hezroni H; Eldar YC; Meshorer E; Yakhini Z; Simon I
    PLoS One; 2012; 7(11):e48986. PubMed ID: 23145042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporal regulation of DNA replication in the human genome and its association with genomic instability and disease.
    Watanabe Y; Maekawa M
    Curr Med Chem; 2010; 17(3):222-33. PubMed ID: 20214565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Replication timing as an epigenetic mark.
    Hiratani I; Gilbert DM
    Epigenetics; 2009 Feb; 4(2):93-7. PubMed ID: 19242104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. scRepli-Seq: A Powerful Tool to Study Replication Timing and Genome Instability.
    Sakamoto M; Hori S; Yamamoto A; Yoneda T; Kuriya K; Takebayashi SI
    Cytogenet Genome Res; 2022; 162(4):161-170. PubMed ID: 36455525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection.
    Karnani N; Taylor CM; Malhotra A; Dutta A
    Mol Biol Cell; 2010 Feb; 21(3):393-404. PubMed ID: 19955211
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide and sister chromatid-resolved profiling of protein occupancy in replicated chromatin with ChOR-seq and SCAR-seq.
    Petryk N; Reverón-Gómez N; González-Aguilera C; Dalby M; Andersson R; Groth A
    Nat Protoc; 2021 Sep; 16(9):4446-4493. PubMed ID: 34363071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution profiling of Drosophila replication start sites reveals a DNA shape and chromatin signature of metazoan origins.
    Comoglio F; Schlumpf T; Schmid V; Rohs R; Beisel C; Paro R
    Cell Rep; 2015 May; 11(5):821-34. PubMed ID: 25921534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural organization of human replication timing domains.
    Boulos RE; Drillon G; Argoul F; Arneodo A; Audit B
    FEBS Lett; 2015 Oct; 589(20 Pt A):2944-57. PubMed ID: 25912651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allele-specific control of replication timing and genome organization during development.
    Rivera-Mulia JC; Dimond A; Vera D; Trevilla-Garcia C; Sasaki T; Zimmerman J; Dupont C; Gribnau J; Fraser P; Gilbert DM
    Genome Res; 2018 Jun; 28(6):800-811. PubMed ID: 29735606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic and epigenetic determinants of DNA replication origins, position and activation.
    Méchali M; Yoshida K; Coulombe P; Pasero P
    Curr Opin Genet Dev; 2013 Apr; 23(2):124-31. PubMed ID: 23541525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large replication skew domains delimit GC-poor gene deserts in human.
    Zaghloul L; Drillon G; Boulos RE; Argoul F; Thermes C; Arneodo A; Audit B
    Comput Biol Chem; 2014 Dec; 53 Pt A():153-65. PubMed ID: 25224847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing the physical genome.
    Pollack JR; Iyer VR
    Nat Genet; 2002 Dec; 32 Suppl():515-21. PubMed ID: 12454647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MPE-seq, a new method for the genome-wide analysis of chromatin structure.
    Ishii H; Kadonaga JT; Ren B
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3457-65. PubMed ID: 26080409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide analysis of DNA replication and DNA double-strand breaks using TrAEL-seq.
    Kara N; Krueger F; Rugg-Gunn P; Houseley J
    PLoS Biol; 2021 Mar; 19(3):e3000886. PubMed ID: 33760805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.