These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 19966305)

  • 1. Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations.
    Csanády L; Vergani P; Gadsby DC
    Proc Natl Acad Sci U S A; 2010 Jan; 107(3):1241-6. PubMed ID: 19966305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
    Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
    Tsai MF; Li M; Hwang TC
    J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.
    Szollosi A; Muallem DR; Csanády L; Vergani P
    J Gen Physiol; 2011 Jun; 137(6):549-62. PubMed ID: 21576373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels.
    Chaves LA; Gadsby DC
    J Gen Physiol; 2015 Apr; 145(4):261-83. PubMed ID: 25825169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains.
    Powe AC; Al-Nakkash L; Li M; Hwang TC
    J Physiol; 2002 Mar; 539(Pt 2):333-46. PubMed ID: 11882668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational changes in the catalytically inactive nucleotide-binding site of CFTR.
    Csanády L; Mihályi C; Szollosi A; Töröcsik B; Vergani P
    J Gen Physiol; 2013 Jul; 142(1):61-73. PubMed ID: 23752332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of F1296 and N1303 of CFTR in induced-fit conformational change in response to ATP binding at NBD2.
    Szollosi A; Vergani P; Csanády L
    J Gen Physiol; 2010 Oct; 136(4):407-23. PubMed ID: 20876359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects.
    Csanády L; Töröcsik B
    J Gen Physiol; 2014 Oct; 144(4):321-36. PubMed ID: 25267914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity.
    Carson MR; Travis SM; Welsh MJ
    J Biol Chem; 1995 Jan; 270(4):1711-7. PubMed ID: 7530246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing.
    Kloch M; Milewski M; Nurowska E; Dworakowska B; Cutting GR; Dołowy K
    Cell Physiol Biochem; 2010; 25(2-3):169-80. PubMed ID: 20110677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC; Dousmanis AG; Nairn AC
    Acta Physiol Scand Suppl; 1998 Aug; 643():247-56. PubMed ID: 9789567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.