These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19966387)

  • 1. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization.
    Yin H; Liu H; Shen WZ
    Nanotechnology; 2010 Jan; 21(3):035601. PubMed ID: 19966387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties.
    Wender H; Feil AF; Diaz LB; Ribeiro CS; Machado GJ; Migowski P; Weibel DE; Dupont J; Teixeira SR
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1359-65. PubMed ID: 21443251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-rate formation of TiO2 nanotube arrays in an organic bath and their applications in photocatalysis.
    Sreekantan S; Saharudin KA; Lockman Z; Tzu TW
    Nanotechnology; 2010 Sep; 21(36):365603. PubMed ID: 20705970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening.
    Yoriya S; Grimes CA
    Langmuir; 2010 Jan; 26(1):417-20. PubMed ID: 20038179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the synthesis and characterizations of TiO2 nanotubes.
    Dubey PK; Mishra PR; Sinha AS; Srivastava ON
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5507-14. PubMed ID: 19928254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of highly ordered TiO2 nanotube arrays via anodization of Ti-6Al-4V alloy sheet.
    Wang L; Zhao TT; Zhang Z; Li G
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8312-21. PubMed ID: 21121333
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Lee WH; Lai CW; Hamid SBA
    Materials (Basel); 2015 Aug; 8(9):5702-5714. PubMed ID: 28793530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of titania nanotube arrays in viscous electrolytes.
    Mohamed Ael R; Kasemphaibulsuk N; Rohani S; Barghi S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1998-2008. PubMed ID: 20355616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization.
    Chanmanee W; Watcharenwong A; Chenthamarakshan CR; Kajitvichyanukul P; de Tacconi NR; Rajeshwar K
    J Am Chem Soc; 2008 Jan; 130(3):965-74. PubMed ID: 18163623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical synthesis of self-organized TiO
    Giorgi L; Dikonimos T; Giorgi R; Buonocore F; Faggio G; Messina G; Lisi N
    Nanotechnology; 2018 Mar; 29(9):095604. PubMed ID: 29283108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of near micrometer-sized TiO2 nanotube arrays by high voltage anodization.
    Ni J; Noh K; Frandsen CJ; Kong SD; He G; Tang T; Jin S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):259-64. PubMed ID: 25428070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anodic growth of large-diameter multipodal TiO2 nanotubes.
    Mohammadpour A; Waghmare PR; Mitra SK; Shankar K
    ACS Nano; 2010 Dec; 4(12):7421-30. PubMed ID: 21126101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, Structure, and Photocatalytic Properties of Hierarchical V₂O₅-TiO₂ Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti-V Alloys.
    Nevárez-Martínez MC; Mazierski P; Kobylański MP; Szczepańska G; Trykowski G; Malankowska A; Kozak M; Espinoza-Montero PJ; Zaleska-Medynska A
    Molecules; 2017 Apr; 22(4):. PubMed ID: 28379185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the growth mechanism of large-diameter double-wall TiO
    Ke C; Ma J; Ni J; Peng Z
    Ann Transl Med; 2023 Jan; 11(1):18. PubMed ID: 36760252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays.
    Zhang R; Wu H; Ni J; Zhao C; Chen Y; Zheng C; Zhang X
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():272-9. PubMed ID: 26042715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast Growth of Highly Ordered TiO
    Song J; Zheng M; Zhang B; Li Q; Wang F; Ma L; Li Y; Zhu C; Ma L; Shen W
    Nanomicro Lett; 2017; 9(2):13. PubMed ID: 30460310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates.
    Lee K; Ku H; Pak D
    Chemosphere; 2016 Apr; 149():114-20. PubMed ID: 26855214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed growth of TiO2 nanotube arrays with gradient pore diameter and ultrathin tube wall under high-field anodization.
    Yuan X; Zheng M; Ma L; Shen W
    Nanotechnology; 2010 Oct; 21(40):405302. PubMed ID: 20829566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.