These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19966394)

  • 1. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes.
    Aliev AE; Lima MH; Silverman EM; Baughman RH
    Nanotechnology; 2010 Jan; 21(3):035709. PubMed ID: 19966394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Porous Polyvinylidene Fluoride/Multi-Walled Carbon Nanotube Nanocomposites and Their Enhanced Thermoelectric Performance.
    Du FP; Qiao X; Wu YG; Fu P; Liu SP; Zhang YF; Wang QY
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation.
    Liu P; Fan Z; Mikhalchan A; Tran TQ; Jewell D; Duong HM; Marconnet AM
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17461-71. PubMed ID: 27322344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh Thermal Conductivity of Interface Materials by Silver-Functionalized Carbon Nanotube Phonon Conduits.
    Suh D; Moon CM; Kim D; Baik S
    Adv Mater; 2016 Sep; 28(33):7220-7. PubMed ID: 27273764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules.
    Cui L; Feng Y; Zhang X
    Phys Chem Chem Phys; 2015 Nov; 17(41):27520-6. PubMed ID: 26426675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets.
    Nguyen N; Zhang S; Oluwalowo A; Park JG; Yao K; Liang R
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27171-27177. PubMed ID: 30020763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.
    Qian X; Gu X; Dresselhaus MS; Yang R
    J Phys Chem Lett; 2016 Nov; 7(22):4744-4750. PubMed ID: 27806567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Thermal Conductivity of Free-Standing Double-Walled Carbon Nanotube Networks.
    Mehew JD; Timmermans MY; Saleta Reig D; Sergeant S; Sledzinska M; Chávez-Ángel E; Gallagher E; Sotomayor Torres CM; Huyghebaert C; Tielrooij KJ
    ACS Appl Mater Interfaces; 2023 Oct; 15(44):51876-84. PubMed ID: 37889473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.
    He Y; Ming Y; Li W; Li Y; Wu M; Song J; Li X; Liu H
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.
    Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L
    ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
    Cui L; Feng Y; Tan P; Zhang X
    Phys Chem Chem Phys; 2015 Jul; 17(25):16476-82. PubMed ID: 26051798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites.
    Zhang X; Tan W; Smail F; De Volder M; Fleck N; Boies A
    Nanotechnology; 2018 Sep; 29(36):365708. PubMed ID: 29916810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport in C
    Cheng X; Wang X
    Nanotechnology; 2019 Jun; 30(25):255401. PubMed ID: 30769336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Morphology and Crystal Structure on the Thermal Conductivity of Titania Nanotubes.
    Ali S; Orell O; Kanerva M; Hannula SP
    Nanoscale Res Lett; 2018 Jul; 13(1):212. PubMed ID: 30014264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks.
    Wang Y; Raman Pillai SK; Che J; Chan-Park MB
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8960-8966. PubMed ID: 28221749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature Distribution and Thermal Conductivity Measurements of Chirality-Assigned Single-Walled Carbon Nanotubes by Photoluminescence Imaging Spectroscopy.
    Yoshino K; Kato T; Saito Y; Shitaba J; Hanashima T; Nagano K; Chiashi S; Homma Y
    ACS Omega; 2018 Apr; 3(4):4352-4356. PubMed ID: 31458660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Conductivity of Metal-Coated Tri-Walled Carbon Nanotubes in the Presence of Vacancies-Molecular Dynamics Simulations.
    Dhumal RS; Bommidi D; Salehinia I
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31142028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.
    Yue SY; Ouyang T; Hu M
    Sci Rep; 2015 Oct; 5():15440. PubMed ID: 26490342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.