These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19966394)

  • 21. Effects of the electrical conductivity and orientation of silicon substrate on the synthesis of multi-walled carbon nanotubes by thermal chemical vapor deposition.
    Choi H; Gong J; Lim Y; Im KH; Jeon M
    Nanoscale Res Lett; 2013 Feb; 8(1):110. PubMed ID: 23445774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of interface, height and density of long vertically aligned carbon nanotube arrays on their thermal conductivity: an experimental study.
    Abot JL; Raghavan V; Li G; Thomas EL
    J Nanosci Nanotechnol; 2011 Jan; 11(1):115-24. PubMed ID: 21446414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Thermal Conductivity of Free-Standing Double-Walled Carbon Nanotube Networks.
    Mehew JD; Timmermans MY; Saleta Reig D; Sergeant S; Sledzinska M; Chávez-Ángel E; Gallagher E; Sotomayor Torres CM; Huyghebaert C; Tielrooij KJ
    ACS Appl Mater Interfaces; 2023 Oct; 15(44):51876-84. PubMed ID: 37889473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.
    He Y; Ming Y; Li W; Li Y; Wu M; Song J; Li X; Liu H
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Müller-Plathe F; Böhm MC
    J Chem Phys; 2011 Nov; 135(18):184905. PubMed ID: 22088079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.
    Kholmanov I; Kim J; Ou E; Ruoff RS; Shi L
    ACS Nano; 2015 Dec; 9(12):11699-707. PubMed ID: 26529570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.
    Cui L; Feng Y; Tan P; Zhang X
    Phys Chem Chem Phys; 2015 Jul; 17(25):16476-82. PubMed ID: 26051798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics simulations of thermal transport in porous nanotube network structures.
    Varshney V; Roy AK; Froudakis G; Farmer BL
    Nanoscale; 2011 Sep; 3(9):3679-84. PubMed ID: 21808788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-fidelity characterization on anisotropic thermal conductivity of carbon nanotube sheets and on their effects of thermal enhancement of nanocomposites.
    Zhang X; Tan W; Smail F; De Volder M; Fleck N; Boies A
    Nanotechnology; 2018 Sep; 29(36):365708. PubMed ID: 29916810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal transport in C
    Cheng X; Wang X
    Nanotechnology; 2019 Jun; 30(25):255401. PubMed ID: 30769336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites.
    Gulotty R; Castellino M; Jagdale P; Tagliaferro A; Balandin AA
    ACS Nano; 2013 Jun; 7(6):5114-21. PubMed ID: 23672711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Morphology and Crystal Structure on the Thermal Conductivity of Titania Nanotubes.
    Ali S; Orell O; Kanerva M; Hannula SP
    Nanoscale Res Lett; 2018 Jul; 13(1):212. PubMed ID: 30014264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets.
    Carretero-González J; Castillo-Martínez E; Dias-Lima M; Acik M; Rogers DM; Sovich J; Haines CS; Lepró X; Kozlov M; Zhakidov A; Chabal Y; Baughman RH
    Adv Mater; 2012 Nov; 24(42):5695-701. PubMed ID: 22911965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exceptional high thermal conductivity of inter-connected annular graphite structures.
    Zhuang S; Zhang F; Liu Y; Lu C
    Phys Chem Chem Phys; 2019 Dec; 21(45):25495-25505. PubMed ID: 31714563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of the thermal conductivity of carbon nanotube--tissue phantom composites with the hot wire probe method.
    Sarkar S; Zimmermann K; Leng W; Vikesland P; Zhang J; Dorn H; Diller T; Rylander C; Rylander MN
    Ann Biomed Eng; 2011 Jun; 39(6):1745-58. PubMed ID: 21360225
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural model for dry-drawing of sheets and yarns from carbon nanotube forests.
    Kuznetsov AA; Fonseca AF; Baughman RH; Zakhidov AA
    ACS Nano; 2011 Feb; 5(2):985-93. PubMed ID: 21294525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-robust, lightweight, conducting carbon nanotube blocks cross-linked by de-fluorination.
    Sato Y; Ootsubo M; Yamamoto G; Van Lier G; Terrones M; Hashiguchi S; Kimura H; Okubo A; Motomiya K; Jeyadevan B; Hashida T; Tohji K
    ACS Nano; 2008 Feb; 2(2):348-56. PubMed ID: 19206637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.