These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 19966394)

  • 41. Lung toxicity of a vapor-grown carbon fiber in comparison with a multi-walled carbon nanotube in F344 rats.
    Numano T; Sugiyama T; Kawabe M; Mera Y; Ogawa R; Nishioka A; Fukui H; Sato K; Hagiwara Y
    J Toxicol Pathol; 2021 Jan; 34(1):57-71. PubMed ID: 33627945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Small-Nanostructure-Size-Limited Phonon Transport within Composite Films Made of Single-Wall Carbon Nanotubes and Reduced Graphene Oxides.
    Chen Q; Yan X; Wu L; Xiao Y; Wang S; Cheng G; Zheng R; Hao Q
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5435-5444. PubMed ID: 33492119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Super-robust, lightweight, conducting carbon nanotube blocks cross-linked by de-fluorination.
    Sato Y; Ootsubo M; Yamamoto G; Van Lier G; Terrones M; Hashiguchi S; Kimura H; Okubo A; Motomiya K; Jeyadevan B; Hashida T; Tohji K
    ACS Nano; 2008 Feb; 2(2):348-56. PubMed ID: 19206637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Experimental investigation of the thermal transport properties of a carbon nanohybrid dispersed nanofluid.
    Baby TT; Ramaprabhu S
    Nanoscale; 2011 May; 3(5):2208-14. PubMed ID: 21455535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber- and Matrix-Anchored Carbon Nanotube Networks.
    Wang Y; Raman Pillai SK; Che J; Chan-Park MB
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8960-8966. PubMed ID: 28221749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density.
    Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE
    ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature Distribution and Thermal Conductivity Measurements of Chirality-Assigned Single-Walled Carbon Nanotubes by Photoluminescence Imaging Spectroscopy.
    Yoshino K; Kato T; Saito Y; Shitaba J; Hanashima T; Nagano K; Chiashi S; Homma Y
    ACS Omega; 2018 Apr; 3(4):4352-4356. PubMed ID: 31458660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measuring the thermal conductivity of a single carbon nanotube.
    Fujii M; Zhang X; Xie H; Ago H; Takahashi K; Ikuta T; Abe H; Shimizu T
    Phys Rev Lett; 2005 Aug; 95(6):065502. PubMed ID: 16090962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of the tube diameter distribution on the high-temperature structural modification of bundled single-walled carbon nanotubes.
    Kim UJ; GutiƩrrez HR; Kim JP; Eklund PC
    J Phys Chem B; 2005 Dec; 109(49):23358-65. PubMed ID: 16375307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.
    Yue SY; Ouyang T; Hu M
    Sci Rep; 2015 Oct; 5():15440. PubMed ID: 26490342
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermal transport measurements of individual multiwalled nanotubes.
    Kim P; Shi L; Majumdar A; McEuen PL
    Phys Rev Lett; 2001 Nov; 87(21):215502. PubMed ID: 11736348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films.
    Yamakawa A; Suzuki S; Oku T; Enomoto K; Ikeda M; Rodrigue J; Tateiwa K; Terada Y; Yano H; Kitamura S
    Carbohydr Polym; 2017 Sep; 171():129-135. PubMed ID: 28578946
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Suppressed thermal conductivity of ultrathin carbon nanotube(2, 1) upon hydrogenation.
    Zhang T; Zhu L; Chen G
    J Chem Phys; 2015 Sep; 143(11):114710. PubMed ID: 26395731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dramatic property enhancement in polyetherimide using low-cost commercially functionalized multi-walled carbon nanotubes via a facile solution processing method.
    Kumar S; Li B; Caceres S; Maguire RG; Zhong WH
    Nanotechnology; 2009 Nov; 20(46):465708. PubMed ID: 19847036
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of the thermal conductivity of a water-based single-wall carbon nanotube colloidal suspension with a modified 3- omega method.
    Choi TY; Maneshian MH; Kang B; Chang WS; Han CS; Poulikakos D
    Nanotechnology; 2009 Aug; 20(31):315706. PubMed ID: 19597251
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Model for the effective thermal conductivity of carbon nanotube composites.
    Xue QZ
    Nanotechnology; 2006 Mar; 17(6):1655-60. PubMed ID: 26558574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.