These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19966395)

  • 1. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface.
    Rykaczewski K; Henry MR; Kim SK; Fedorov AG; Kulkarni D; Singamaneni S; Tsukruk VV
    Nanotechnology; 2010 Jan; 21(3):035202. PubMed ID: 19966395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of an amorphous carbon layer on a multi-wall carbon nanotube attached atomic force microscope tip in making good electrical contact to a gold electrode.
    Kahng YH; Choi J; Park BC; Kim DH; Choi JH; Lyou J; Ahn SJ
    Nanotechnology; 2008 May; 19(19):195705. PubMed ID: 21825723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-beam and ion-beam-induced deposited tungsten contacts for carbon nanofiber interconnects.
    Wilhite P; Uh HS; Kanzaki N; Wang P; Vyas A; Maeda S; Yamada T; Yang CY
    Nanotechnology; 2014 Sep; 25(37):375702. PubMed ID: 25148299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Resistance and Force of a Carbon Nanotube/Metal Side Contact by Nanomanipulation.
    Yu N; Nakajima M; Shi Q; Yang Z; Wang H; Sun L; Huang Q; Fukuda T
    Scanning; 2017; 2017():5910734. PubMed ID: 29109819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of focused ion beam deposition induced contamination on the transport properties of nano devices.
    Lan YW; Chang WH; Chang YC; Chang CS; Chen CD
    Nanotechnology; 2015 Feb; 26(5):055705. PubMed ID: 25590566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.
    Luo Q; Cui AJ; Zhang YG; Lu C; Jin AZ; Yang HF; Gu CZ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7477-80. PubMed ID: 21137963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavin Mononucleotide-Mediated Formation of Highly Electrically Conductive Hierarchical Monoclinic Multiwalled Carbon Nanotube-Polyamide 6 Nanocomposites.
    Park M; Yoon S; Park J; Park NH; Ju SY
    ACS Nano; 2020 Aug; 14(8):10655-10665. PubMed ID: 32806060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillarity-assisted assembly of carbon nanotube microstructures with organized initiations.
    Lim X; Foo HW; Chia GH; Sow CH
    ACS Nano; 2010 Feb; 4(2):1067-75. PubMed ID: 20055438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanofiber interconnect RF characteristics improvement with deposited tungsten contacts.
    Vyas AA; Madriz F; Kanzaki N; Wilhite P; Sun X; Yamada T; Yang CY
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2683-6. PubMed ID: 24745286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects.
    Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM
    Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical transport and electromigration studies on nickel encapsulated carbon nanotubes: possible future interconnects.
    Kulshrestha N; Misra A; Misra DS
    Nanotechnology; 2013 May; 24(18):185201. PubMed ID: 23575106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of ion/electron beam induced deposition for electrical connection using a modern focused ion beam system.
    An BS; Kwon Y; Oh JS; Shin YJ; Ju JS; Yang CW
    Appl Microsc; 2019 Jul; 49(1):6. PubMed ID: 33580325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.
    Batra NM; Patole SP; Abdelkader A; Anjum DH; Deepak FL; Costa PM
    Nanotechnology; 2015 Nov; 26(44):445301. PubMed ID: 26451669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of graphitization on the wettability and electrical conductivity of CVD-carbon nanotubes and films.
    Mattia D; Rossi MP; Kim BM; Korneva G; Bau HH; Gogotsi Y
    J Phys Chem B; 2006 May; 110(20):9850-5. PubMed ID: 16706438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties.
    Jin CH; Wang JY; Chen Q; Peng LM
    J Phys Chem B; 2006 Mar; 110(11):5423-8. PubMed ID: 16539478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects.
    Schulze A; Hantschel T; Dathe A; Eyben P; Ke X; Vandervorst W
    Nanotechnology; 2012 Aug; 23(30):305707. PubMed ID: 22781880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction forces and conduction properties between multi wall carbon nanotube tips and Au(111).
    Luna M; de Pablo PJ; Colchero J; Gomez-Herrero J; Baro AM; Tokumoto H; Jarvis SP
    Ultramicroscopy; 2003 Jul; 96(1):83-92. PubMed ID: 12623173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 k induced by the field-emission current.
    Purcell ST; Vincent P; Journet C; Binh VT
    Phys Rev Lett; 2002 Mar; 88(10):105502. PubMed ID: 11909368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic deposition of multi-walled carbon nanotube on a stainless steel electrode for use in sediment microbial fuel cells.
    Song TS; Peng-Xiao ; Wu XY; Zhou CC
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1241-50. PubMed ID: 23657903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.