These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19966401)

  • 1. The enhanced alcohol-sensing response of ultrathin WO3 nanoplates.
    Chen D; Hou X; Wen H; Wang Y; Wang H; Li X; Zhang R; Lu H; Xu H; Guan S; Sun J; Gao L
    Nanotechnology; 2010 Jan; 21(3):035501. PubMed ID: 19966401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties.
    Zou XX; Li GD; Wang PP; Su J; Zhao J; Zhou LJ; Wang YN; Chen JS
    Dalton Trans; 2012 Aug; 41(32):9773-80. PubMed ID: 22767327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced nitrogen oxide sensing performance based on tin-doped tungsten oxide nanoplates by a hydrothermal method.
    Wang C; Guo L; Xie N; Kou X; Sun Y; Chuai X; Zhang S; Song H; Wang Y; Lu G
    J Colloid Interface Sci; 2018 Feb; 512():740-749. PubMed ID: 29107925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous tungsten oxide nanoflakes for highly alcohol sensitive performance.
    Xiao J; Liu P; Liang Y; Li HB; Yang GW
    Nanoscale; 2012 Nov; 4(22):7078-83. PubMed ID: 23069859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size- and shape-controlled conversion of tungstate-based inorganic-organic hybrid belts to WO3 nanoplates with high specific surface areas.
    Chen D; Gao L; Yasumori A; Kuroda K; Sugahara Y
    Small; 2008 Oct; 4(10):1813-22. PubMed ID: 18844301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.
    Aluri GS; Motayed A; Davydov AV; Oleshko VP; Bertness KA; Sanford NA; Mulpuri RV
    Nanotechnology; 2012 May; 23(17):175501. PubMed ID: 22481611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WO
    Li X; Wu Z; Song X; Li D; Liu J; Zhang J
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Acoustic Wave Hydrogen Sensors Based on Nanostructured Pd/WO₃ Bilayers.
    Miu D; Birjega R; Viespe C
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters.
    D'Arienzo M; Armelao L; Mari CM; Polizzi S; Ruffo R; Scotti R; Morazzoni F
    J Am Chem Soc; 2011 Apr; 133(14):5296-304. PubMed ID: 21425840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO₃ nanoplates.
    Chen D; Li T; Chen Q; Gao J; Fan B; Li J; Li X; Zhang R; Sun J; Gao L
    Nanoscale; 2012 Sep; 4(17):5431-9. PubMed ID: 22836730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale synthesis of single-crystalline self-standing SnSe
    Chen M; Li Z; Li W; Shan C; Li W; Li K; Gu G; Feng Y; Zhong G; Wei L; Yang C
    Nanotechnology; 2018 Nov; 29(45):455501. PubMed ID: 30168800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and gas-sensing characteristics of WO3 nanofibers via electrospinning.
    Leng JY; Xu XJ; Lv N; Fan HT; Zhang T
    J Colloid Interface Sci; 2011 Apr; 356(1):54-7. PubMed ID: 21220140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tungsten trioxide nanoplate array supported platinum as a highly efficient counter electrode for dye-sensitized solar cells.
    Song D; Cui P; Zhao X; Li M; Chu L; Wang T; Jiang B
    Nanoscale; 2015 Mar; 7(13):5712-8. PubMed ID: 25743611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of TiO₂ nanocrystals by WO(x) coating or wrapping: solvothermal synthesis and enhanced surface chemistry.
    Epifani M; Díaz R; Force C; Comini E; Manzanares M; Andreu T; Genç A; Arbiol J; Siciliano P; Faglia G; Morante JR
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6898-908. PubMed ID: 25775118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical-driven ultrafast facile synthesis of WO
    Soltani T; Tayyebi A; Lee BK
    Ultrason Sonochem; 2019 Jan; 50():230-238. PubMed ID: 30270006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive NO
    Yang Z; Su C; Wang S; Han Y; Chen X; Xu S; Zhou Z; Hu N; Su Y; Zeng M
    Nanotechnology; 2020 Feb; 31(7):075501. PubMed ID: 31661676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO(3) quantum dots and gas-sensing enhancement by surface oxygen vacancies.
    Epifani M; Comini E; Díaz R; Andreu T; Genç A; Arbiol J; Siciliano P; Faglia G; Morante JR
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16808-16. PubMed ID: 25211288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Potential of WO₃ Based Sensors for Breath Analysis.
    Staerz A; Weimar U; Barsan N
    Sensors (Basel); 2016 Oct; 16(11):. PubMed ID: 27801881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.
    Horprathum M; Srichaiyaperk T; Samransuksamer B; Wisitsoraat A; Eiamchai P; Limwichean S; Chananonnawathorn C; Aiempanakit K; Nuntawong N; Patthanasettakul V; Oros C; Porntheeraphat S; Songsiriritthigul P; Nakajima H; Tuantranont A; Chindaudom P
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22051-60. PubMed ID: 25422873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.