BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 19967136)

  • 1. Chlamydia pneumoniae adversely modulates vascular cell properties by direct interaction with signalling cascades.
    Kern JM; Maass V; Maass M
    Thromb Haemost; 2009 Dec; 102(6):1064-70. PubMed ID: 19967136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proliferative stimulation of the vascular Endothelin-1 axis in vitro and ex vivo by infection with Chlamydia pneumoniae.
    Kern JM; Maass V; Rupp J; Maass M
    Thromb Haemost; 2009 Oct; 102(4):743-53. PubMed ID: 19806261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia pneumoniae-induced pathological signaling in the vasculature.
    Kern JM; Maass V; Maass M
    FEMS Immunol Med Microbiol; 2009 Mar; 55(2):131-9. PubMed ID: 19281565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview.
    Kern JM; Maass V; Maass M
    Clin Microbiol Infect; 2009 Jan; 15(1):36-41. PubMed ID: 19220338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo.
    Rupp J; Hellwig-Burgel T; Wobbe V; Seitzer U; Brandt E; Maass M
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3447-52. PubMed ID: 15722416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydophila pneumoniae. Mechanisms of target cell infection and activation.
    Krüll M; Maass M; Suttorp N; Rupp J
    Thromb Haemost; 2005 Aug; 94(2):319-26. PubMed ID: 16113821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydia pneumoniae directly interferes with HIF-1alpha stabilization in human host cells.
    Rupp J; Gieffers J; Klinger M; van Zandbergen G; Wrase R; Maass M; Solbach W; Deiwick J; Hellwig-Burgel T
    Cell Microbiol; 2007 Sep; 9(9):2181-91. PubMed ID: 17490410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia pneumoniae and atherosclerosis: the role of mast cells.
    Di Pietro M; Schiavoni G; Del Piano M; Shaik Y; Boscolo P; Caraffa A; Grano M; Teté S; Conti F; Sessa R
    J Biol Regul Homeost Agents; 2009; 23(2):65-9. PubMed ID: 19589286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possibilities for therapeutic interventions in disrupting Chlamydophila pneumoniae involvement in atherosclerosis.
    Deniset JF; Pierce GN
    Fundam Clin Pharmacol; 2010 Oct; 24(5):607-17. PubMed ID: 20653790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chlamydia pneumoniae--chronic infection and atherosclerosis].
    Tiran B
    Wien Med Wochenschr; 2001; 151(24):590-3. PubMed ID: 11820175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Up-regulation of host cell genes during interferon-gamma-induced persistent Chlamydia pneumoniae infection in HL cells.
    Mannonen L; Nikula T; Haveri A; Reinikainen A; Vuola JM; Lahesmaa R; Puolakkainen M
    J Infect Dis; 2007 Jan; 195(2):212-9. PubMed ID: 17191166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host cell responses to Chlamydia pneumoniae in gamma interferon-induced persistence overlap those of productive infection and are linked to genes involved in apoptosis, cell cycle, and metabolism.
    Eickhoff M; Thalmann J; Hess S; Martin M; Laue T; Kruppa J; Brandes G; Klos A
    Infect Immun; 2007 Jun; 75(6):2853-63. PubMed ID: 17353287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission of Chlamydia pneumoniae infection from blood monocytes to vascular cells in a novel transendothelial migration model.
    Rupp J; Koch M; van Zandbergen G; Solbach W; Brandt E; Maass M
    FEMS Microbiol Lett; 2005 Jan; 242(2):203-8. PubMed ID: 15621438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microarray analysis of a Chlamydia pneumoniae-infected human epithelial cell line by use of gene ontology hierarchy.
    Alvesalo J; Greco D; Leinonen M; Raitila T; Vuorela P; Auvinen P
    J Infect Dis; 2008 Jan; 197(1):156-62. PubMed ID: 18171299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia pneumoniae infection enhances lectin-like oxidized low-density lipoprotein receptor (LOX-1) expression on human endothelial cells.
    Yoshida T; Koide N; Mori I; Ito H; Yokochi T
    FEMS Microbiol Lett; 2006 Jul; 260(1):17-22. PubMed ID: 16790013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms.
    Loppnow H; Werdan K; Buerke M
    Innate Immun; 2008 Apr; 14(2):63-87. PubMed ID: 18713724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells.
    Yang X; Coriolan D; Schultz K; Golenbock DT; Beasley D
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2308-14. PubMed ID: 16179594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chlamydia pneumoniae--pathogenesis and perspectives].
    Berdal BP; Scheel O
    Tidsskr Nor Laegeforen; 1993 Mar; 113(7):859-61. PubMed ID: 8480296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells.
    Gérard HC; Fomicheva E; Whittum-Hudson JA; Hudson AP
    Microb Pathog; 2008 Apr; 44(4):279-85. PubMed ID: 17997273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.