BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 19967532)

  • 1. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Takeda H; Hiramatsu H; Yamashita S; Takehara Y; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):921-8. PubMed ID: 20012431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D cine phase-contrast MRI at 3T in intracranial aneurysms compared with patient-specific computational fluid dynamics.
    van Ooij P; Schneiders JJ; Marquering HA; Majoie CB; van Bavel E; Nederveen AJ
    AJNR Am J Neuroradiol; 2013 Sep; 34(9):1785-91. PubMed ID: 23598829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics.
    Perera R; Isoda H; Ishiguro K; Mizuno T; Takehara Y; Terada M; Tanoi C; Naito T; Sakahara H; Hiramatsu H; Namba H; Izumi T; Wakabayashi T; Kosugi T; Onishi Y; Alley M; Komori Y; Ikeda M; Naganawa S
    Magn Reson Med Sci; 2020 Dec; 19(4):333-344. PubMed ID: 31956175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance fluid dynamics for intracranial aneurysms--comparison with computed fluid dynamics.
    Naito T; Miyachi S; Matsubara N; Isoda H; Izumi T; Haraguchi K; Takahashi I; Ishii K; Wakabayashi T
    Acta Neurochir (Wien); 2012 Jun; 154(6):993-1001. PubMed ID: 22392013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics.
    Boussel L; Rayz V; Martin A; Acevedo-Bolton G; Lawton MT; Higashida R; Smith WS; Young WL; Saloner D
    Magn Reson Med; 2009 Feb; 61(2):409-17. PubMed ID: 19161132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data.
    Futami K; Sano H; Misaki K; Nakada M; Ueda F; Hamada J
    AJNR Am J Neuroradiol; 2014 Jul; 35(7):1363-70. PubMed ID: 24610906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements.
    Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D
    J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verifying the Accuracy of Hemodynamic Analysis Using High Spatial Resolution 3D Phase-contrast MR Imaging on a 7T MR System: Comparison with a 3T System.
    Tajima S; Isoda H; Fukunaga M; Komori Y; Naganawa S; Sadato N
    Magn Reson Med Sci; 2023 Dec; ():. PubMed ID: 38123345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflow Hemodynamics of Intracranial Aneurysms: A Comparison of Computational Fluid Dynamics and 4D Flow Magnetic Resonance Imaging.
    Misaki K; Futami K; Uno T; Nambu I; Yoshikawa A; Kamide T; Nakada M
    J Stroke Cerebrovasc Dis; 2021 May; 30(5):105685. PubMed ID: 33662703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging.
    Berg P; Stucht D; Janiga G; Beuing O; Speck O; Thévenin D
    J Biomech Eng; 2014 Apr; 136(4):. PubMed ID: 24292415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic vascular biomarkers for initiation of paraclinoid internal carotid artery aneurysms using patient-specific computational fluid dynamic simulation based on magnetic resonance imaging.
    Watanabe T; Isoda H; Takehara Y; Terada M; Naito T; Kosugi T; Onishi Y; Tanoi C; Izumi T
    Neuroradiology; 2018 May; 60(5):545-555. PubMed ID: 29520642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T.
    Strecker C; Harloff A; Wallis W; Markl M
    J Magn Reson Imaging; 2012 Nov; 36(5):1097-103. PubMed ID: 22745007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T.
    Meckel S; Stalder AF; Santini F; Radü EW; Rüfenacht DA; Markl M; Wetzel SG
    Neuroradiology; 2008 Jun; 50(6):473-84. PubMed ID: 18350286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MR-based computational fluid dynamics with patient-specific boundary conditions for the initiation of a sidewall aneurysm of a basilar artery.
    Isoda H; Takehara Y; Kosugi T; Terada M; Naito T; Onishi Y; Tanoi C; Amaya K; Sakahara H
    Magn Reson Med Sci; 2015; 14(2):139-44. PubMed ID: 25740234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.