BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19968107)

  • 1. [Use of dinoflagellates as a metal toxicity assessment tool in aquatic system].
    Yuan LJ; He MC
    Huan Jing Ke Xue; 2009 Oct; 30(10):2918-23. PubMed ID: 19968107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of bioluminescent dinoflagellates as an environmental risk assessment tool.
    Lapota D; Osorio AR; Liao C; Bjorndal B
    Mar Pollut Bull; 2007 Dec; 54(12):1857-67. PubMed ID: 17928009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of bioluminescent dinoflagellate (QwikLite) and bacterial (Microtox) rapid bioassays for the detection of metal and ammonia toxicity.
    Rosen G; Osorio-Robayo A; Rivera-Duarte I; Lapota D
    Arch Environ Contam Toxicol; 2008 May; 54(4):606-11. PubMed ID: 18026774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH, EDTA, and anions on heavy metal toxicity toward a bioluminescent cyanobacterial bioreporter.
    Rodea-Palomares I; González-García C; Leganés F; Fernández-Piñas F
    Arch Environ Contam Toxicol; 2009 Oct; 57(3):477-87. PubMed ID: 19169738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different biological methods for the assessment of ecotoxicological risks.
    Fenske C; Daeschlein G; Günther B; Knauer A; Rudolph P; Schwahn C; Adrian V; von Woedtke T; Rossberg H; Jülich WD; Kramer A
    Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axopodial degradation in the heliozoon Raphidiophrys contractilis: a novel bioassay system for detecting heavy metal toxicity in an aquatic environment.
    Khan SM; Yoshimura C; Arikawa M; Omura G; Nishiyama S; Suetomo Y; Kakuta S; Suzaki T
    Environ Sci; 2006; 13(4):193-200. PubMed ID: 17095991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dinoflagellate Gonyaulax polyedra.
    Okamoto OK; Shao L; Hastings JW; Colepicolo P
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 May; 123(1):75-83. PubMed ID: 10390059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the Qwiklite algal bioluminescence test with marine algal growth rate inhibition bioassays.
    Stauber JL; Binet MT; Bao VW; Boge J; Zhang AQ; Leung KM; Adams MS
    Environ Toxicol; 2008 Oct; 23(5):617-25. PubMed ID: 18528914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of heavy metal inhibition of activated sludge by TTC and INT-electron transport system activity tests.
    Yin J; Tan XJ; Ren NQ; Cui YB; Tang L
    Water Sci Technol; 2005; 52(8):231-9. PubMed ID: 16312972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of stress duration and non-toxic ions on heavy metals toxicity to Arabidopsis seed germination and seedling growth].
    Li W; Mao R; Liu X
    Ying Yong Sheng Tai Xue Bao; 2005 Oct; 16(10):1943-7. PubMed ID: 16422519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Acute toxicity analysis performance of CellSense biosensor with E. coli].
    Wang XJ; Wang H; Zhao JF; Xia SQ; Zhao HN
    Huan Jing Ke Xue; 2009 Apr; 30(4):1210-4. PubMed ID: 19545031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of heavy metals using sperm cell and embryo toxicity bioassays with Paracentrotus lividus (Echinodermata: Echinoidea): comparisons with exposure concentrations in the Lagoon of Venice, Italy.
    Novelli AA; Losso C; Ghetti PF; Ghirardini AV
    Environ Toxicol Chem; 2003 Jun; 22(6):1295-301. PubMed ID: 12785587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.
    Expósito N; Kumar V; Sierra J; Schuhmacher M; Giménez Papiol G
    Sci Total Environ; 2017 Dec; 601-602():865-873. PubMed ID: 28578244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment.
    Zhou S; Wei C; Liao C; Wu H
    J Environ Sci (China); 2008; 20(12):1514-8. PubMed ID: 19209641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater.
    Cui Z; Luan X; Jiang H; Li Q; Xu G; Sun C; Zheng L; Song Y; Davison PA; Huang WE
    Chemosphere; 2018 Jun; 200():322-329. PubMed ID: 29494913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Müller to selected heavy metals.
    Rathore RS; Khangarot BS
    Ecotoxicol Environ Saf; 2002 Sep; 53(1):27-36. PubMed ID: 12481853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem.
    Zhou Q; Zhang J; Fu J; Shi J; Jiang G
    Anal Chim Acta; 2008 Jan; 606(2):135-50. PubMed ID: 18082645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.
    Fu J; Hu X; Tao X; Yu H; Zhang X
    Chemosphere; 2013 Nov; 93(9):1887-95. PubMed ID: 23856465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of metals on Daphnia magna and Tubifex tubifex.
    Fargasová A
    Ecotoxicol Environ Saf; 1994 Mar; 27(2):210-3. PubMed ID: 7516286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water.
    Yang Y; Fang Z; Yu YY; Wang YZ; Naraginti S; Yong YC
    Water Sci Technol; 2019 Mar; 79(6):1071-1080. PubMed ID: 31070587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.