These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19968107)

  • 21. Predicting the toxicity of metal mixtures.
    Balistrieri LS; Mebane CA
    Sci Total Environ; 2014 Jan; 466-467():788-99. PubMed ID: 23973545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay.
    Pokhrel LR; Silva T; Dubey B; El Badawy AM; Tolaymat TM; Scheuerman PR
    Sci Total Environ; 2012 Jun; 426():414-22. PubMed ID: 22521164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acrosome reaction of sperm in the mud crab Scylla serrata as a sensitive toxicity test for metal exposures.
    Zhang Z; Cheng H; Wang Y; Wang S; Xie F; Li S
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):96-104. PubMed ID: 19399549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heavy metal toxicity levels in the coastal sediments of the Arabian Sea along the urban Karachi (Pakistan) region.
    Siddique A; Mumtaz M; Zaigham NA; Mallick KA; Saied S; Zahir E; Khwaja HA
    Mar Pollut Bull; 2009 Sep; 58(9):1406-14. PubMed ID: 19616812
    [No Abstract]   [Full Text] [Related]  

  • 25. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea.
    Mohseni M; Abbaszadeh J; Maghool SS; Chaichi MJ
    Ecotoxicol Environ Saf; 2018 Feb; 148():555-560. PubMed ID: 29127817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Evaluation of TTC and INT-electron transport system activity tests for heavy metal inhibition of activated sludge].
    Yin J; Tan XJ; Ren NQ
    Huan Jing Ke Xue; 2005 Jan; 26(1):56-62. PubMed ID: 15859409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between heavy metal distribution in sediment samples and their ecotoxicity by the use of the Hasse diagram technique.
    Tsakovski S; Kudłak B; Simeonov V; Wolska L; Garcia G; Namieśnik J
    Anal Chim Acta; 2012 Mar; 719():16-23. PubMed ID: 22340526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Winter third- to fourth-instar larvae of Chironomus plumosus as bioassay tools for assessment of acute toxicity of metals and their binary combinations.
    Fargasová A
    Ecotoxicol Environ Saf; 2001 Jan; 48(1):1-5. PubMed ID: 11161670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The usability of the IR, RAC and MRI indices of heavy metal distribution to assess the environmental quality of sewage sludge composts.
    Gusiatin ZM; Kulikowska D
    Waste Manag; 2014 Jul; 34(7):1227-36. PubMed ID: 24785362
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment.
    Komaitis E; Vasiliou E; Kremmydas G; Georgakopoulos DG; Georgiou C
    Sensors (Basel); 2010; 10(8):7089-98. PubMed ID: 22163592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides.
    Nguyen-Ngoc H; Durrieu C; Tran-Minh C
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):316-20. PubMed ID: 18556067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments.
    Yu GB; Liu Y; Yu S; Wu SC; Leung AO; Luo XS; Xu B; Li HB; Wong MH
    Chemosphere; 2011 Oct; 85(6):1080-7. PubMed ID: 21862100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct toxicity assessment of toxic chemicals with electrochemical method.
    Liu C; Sun T; Xu X; Dong S
    Anal Chim Acta; 2009 May; 641(1-2):59-63. PubMed ID: 19393367
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahía Blanca estuary, Argentina.
    Ferrer L; Andrade S; Asteasuain R; Marcovecchio J
    Ecotoxicol Environ Saf; 2006 Oct; 65(2):209-17. PubMed ID: 16098589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria.
    Jouanneau S; Durand MJ; Courcoux P; Blusseau T; Thouand G
    Environ Sci Technol; 2011 Apr; 45(7):2925-31. PubMed ID: 21355529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ciliates as model organisms for the ecotoxicological risk assessment of heavy metals: A meta-analysis.
    Vilas-Boas JA; Cardoso SJ; Senra MVX; Rico A; Dias RJP
    Ecotoxicol Environ Saf; 2020 Aug; 199():110669. PubMed ID: 32450358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity of urban highway runoff with respect to storm duration.
    Kayhanian M; Stransky C; Bay S; Lau SL; Stenstrom MK
    Sci Total Environ; 2008 Jan; 389(2-3):386-406. PubMed ID: 17920106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water.
    Yu D; Zhai J; Yong D; Dong S
    Analyst; 2013 Jun; 138(11):3297-302. PubMed ID: 23612368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence.
    Gellert G
    Ecotoxicol Environ Saf; 2000 Jan; 45(1):87-91. PubMed ID: 10677271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phytochelatins in the diatom Phaeodactylum tricornutum Bohlin: an evaluation of their use as biomarkers of metal exposure in marine waters.
    Morelli E; Fantozzi L
    Bull Environ Contam Toxicol; 2008 Sep; 81(3):236-41. PubMed ID: 18575794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.