These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19968352)

  • 1. Mechanism of alkane dehydrogenation catalyzed by acidic zeolites: Ab initio transition path sampling.
    Bucko T; Benco L; Dubay O; Dellago C; Hafner J
    J Chem Phys; 2009 Dec; 131(21):214508. PubMed ID: 19968352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy effects in hydrocarbon conversion reactions: free-energy integrations and transition-path sampling.
    Bucko T; Hafner J
    J Phys Condens Matter; 2010 Sep; 22(38):384201. PubMed ID: 21386535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis.
    Gounder R; Iglesia E
    Acc Chem Res; 2012 Feb; 45(2):229-38. PubMed ID: 21870839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculating geochemical reaction pathways--exploration of the inner-sphere water exchange mechanism in Al(H2O)6(3+)(aq) + nH2O with ab Initio calculations and molecular dynamics.
    Evans RJ; Rustad JR; Casey WH
    J Phys Chem A; 2008 May; 112(17):4125-40. PubMed ID: 18366199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of initial trajectories for transition path sampling of chemical reactions with ab initio molecular dynamics.
    Rowley CN; Woo TK
    J Chem Phys; 2007 Jan; 126(2):024110. PubMed ID: 17228946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining active catalyst structure and reaction pathways from ab initio molecular dynamics and operando XAFS: dehydrogenation of dimethylaminoborane by rhodium clusters.
    Rousseau R; Schenter GK; Fulton JL; Linehan JC; Engelhard MH; Autrey T
    J Am Chem Soc; 2009 Aug; 131(30):10516-24. PubMed ID: 19585992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multinuclear gallium-oxide cations in high-silica zeolites.
    Pidko EA; van Santen RA; Hensen EJ
    Phys Chem Chem Phys; 2009 Apr; 11(16):2893-902. PubMed ID: 19421504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative dehydrogenation of propane over a VO2-exchanged MCM-22 zeolite: a DFT study.
    Wannakao S; Boekfa B; Khongpracha P; Probst M; Limtrakul J
    Chemphyschem; 2010 Nov; 11(16):3432-8. PubMed ID: 20973120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of isobutane on zeolites: a first principles study.
    Zheng X; Blowers P
    J Phys Chem A; 2006 Feb; 110(7):2455-60. PubMed ID: 16480305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio simulations reveal that reaction dynamics strongly affect product selectivity for the cracking of alkanes over H-MFI.
    Zimmerman PM; Tranca DC; Gomes J; Lambrecht DS; Head-Gordon M; Bell AT
    J Am Chem Soc; 2012 Nov; 134(47):19468-76. PubMed ID: 23072346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring reaction pathways with transition path and umbrella sampling: application to methyl maltoside.
    Dimelow RJ; Bryce RA; Masters AJ; Hillier IH; Burton NA
    J Chem Phys; 2006 Mar; 124(11):114113. PubMed ID: 16555880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach.
    Cao D; Lu GQ; Wieckowski A; Wasileski SA; Neurock M
    J Phys Chem B; 2005 Jun; 109(23):11622-33. PubMed ID: 16852427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A DFT-based analysis of the grossly varying reactivity pattern in room-temperature activation and dehydrogenation of CH4 by main-group atomic M+ (M=Ga, Ge, As, and Se).
    Zhang X; Schwarz H
    Chemistry; 2009 Nov; 15(43):11559-65. PubMed ID: 19774572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient and steady state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts.
    Kondratenko EV; Steinfeldt N; Baerns M
    Phys Chem Chem Phys; 2006 Apr; 8(13):1624-33. PubMed ID: 16633647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.
    Gounder R; Iglesia E
    J Am Chem Soc; 2009 Feb; 131(5):1958-71. PubMed ID: 19146372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ (1)H and (13)C MAS NMR kinetic study of the mechanism of H/D exchange for propane on zeolite H-ZSM-5.
    Arzumanov SS; Reshetnikov SI; Stepanov AG; Parmon VN; Freude D
    J Phys Chem B; 2005 Oct; 109(42):19748-57. PubMed ID: 16853554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pd(n) (n=1-6) clusters in mordenite.
    Grybos R; Benco L; Bucko T; Hafner J
    J Chem Phys; 2009 Mar; 130(10):104503. PubMed ID: 19292537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological analysis of the electronic charge density in the ethene protonation reaction catalyzed by acidic zeolite.
    Zalazar MF; Peruchena NM
    J Phys Chem A; 2007 Aug; 111(32):7848-59. PubMed ID: 17658733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide.
    Redfern PC; Zapol P; Sternberg M; Adiga SP; Zygmunt SA; Curtiss LA
    J Phys Chem B; 2006 Apr; 110(16):8363-71. PubMed ID: 16623521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.