These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 19968462)
1. Chemotrophic microbial mats and their potential for preservation in the rock record. Bailey JV; Orphan VJ; Joye SB; Corsetti FA Astrobiology; 2009 Nov; 9(9):843-59. PubMed ID: 19968462 [TBL] [Abstract][Full Text] [Related]
2. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Osorio-Rodriguez D; Metcalfe KS; McGlynn SE; Yu H; Dekas AE; Ellisman M; Deerinck T; Aristilde L; Grotzinger JP; Orphan VJ Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2302156120. PubMed ID: 38079551 [TBL] [Abstract][Full Text] [Related]
3. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Bailey JV; Corsetti FA; Greene SE; Crosby CH; Liu P; Orphan VJ Geobiology; 2013 Sep; 11(5):397-405. PubMed ID: 23786451 [TBL] [Abstract][Full Text] [Related]
4. A novel, multi-layered methanotrophic microbial mat system growing on the sediment of the Black Sea. Krüger M; Blumenberg M; Kasten S; Wieland A; Känel L; Klock JH; Michaelis W; Seifert R Environ Microbiol; 2008 Aug; 10(8):1934-47. PubMed ID: 18430014 [TBL] [Abstract][Full Text] [Related]
5. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Lepot K; Compère P; Gérard E; Namsaraev Z; Verleyen E; Tavernier I; Hodgson DA; Vyverman W; Gilbert B; Wilmotte A; Javaux EJ Geobiology; 2014 Sep; 12(5):424-50. PubMed ID: 25039968 [TBL] [Abstract][Full Text] [Related]
6. Evidence of oxygenic phototrophy in ancient phosphatic stromatolites from the Paleoproterozoic Vindhyan and Aravalli Supergroups, India. Sallstedt T; Bengtson S; Broman C; Crill PM; Canfield DE Geobiology; 2018 Mar; 16(2):139-159. PubMed ID: 29380943 [TBL] [Abstract][Full Text] [Related]
7. Community living long before man: fossil and living microbial mats and early life. Margulis L; Lopez Baluja L; Awramik SM; Sagan D Sci Total Environ; 1986; 56():379-97. PubMed ID: 11542059 [TBL] [Abstract][Full Text] [Related]
8. Exploring for a record of ancient Martian life. Farmer JD; Des Marais DJ J Geophys Res; 1999 Nov; 104(E11):26977-95. PubMed ID: 11543200 [TBL] [Abstract][Full Text] [Related]
9. Lipid biomarkers for bacterial ecosystems: studies of cultured organisms, hydrothermal environments and ancient sediments. Summons RE; Jahnke LL; Simoneit BR Ciba Found Symp; 1996; 202():174-93; discussion 193-4. PubMed ID: 9243016 [TBL] [Abstract][Full Text] [Related]
10. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Bartley JK; Kah LC; Frank TD; Lyons TW Geobiology; 2015 Jan; 13(1):15-32. PubMed ID: 25354129 [TBL] [Abstract][Full Text] [Related]
11. Carbonate fabrics in the modern microbialites of Pavilion Lake: two suites of microfabrics that reflect variation in microbial community morphology, growth habit, and lithification. Theisen CH; Sumner DY; Mackey TJ; Lim DS; Brady AL; Slater GF Geobiology; 2015 Jul; 13(4):357-72. PubMed ID: 25809931 [TBL] [Abstract][Full Text] [Related]
12. Organic geochemical studies of modern microbial mats from Shark Bay: Part I: Influence of depth and salinity on lipid biomarkers and their isotopic signatures. Pagès A; Grice K; Ertefai T; Skrzypek G; Jahnert R; Greenwood P Geobiology; 2014 Sep; 12(5):469-87. PubMed ID: 25039712 [TBL] [Abstract][Full Text] [Related]
13. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). Engel AS; Meisinger DB; Porter ML; Payn RA; Schmid M; Stern LA; Schleifer KH; Lee NM ISME J; 2010 Jan; 4(1):98-110. PubMed ID: 19675595 [TBL] [Abstract][Full Text] [Related]
14. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Grotzinger JP; Knoll AH Annu Rev Earth Planet Sci; 1999; 27():313-58. PubMed ID: 11543060 [TBL] [Abstract][Full Text] [Related]
15. Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats. White RA; Visscher PT; Burns BP Trends Microbiol; 2021 Mar; 29(3):204-213. PubMed ID: 32654857 [TBL] [Abstract][Full Text] [Related]
16. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Drewniak L; Maryan N; Lewandowski W; Kaczanowski S; Sklodowska A Environ Pollut; 2012 Mar; 162():190-201. PubMed ID: 22243864 [TBL] [Abstract][Full Text] [Related]
17. The role of microbial mats in the production of reduced gases on the early Earth. Hoehler TM; Bebout BM; Des Marais DJ Nature; 2001 Jul; 412(6844):324-7. PubMed ID: 11460161 [TBL] [Abstract][Full Text] [Related]
18. Ancient sedimentary structures in the <3.7 Ga Gillespie Lake Member, Mars, that resemble macroscopic morphology, spatial associations, and temporal succession in terrestrial microbialites. Noffke N Astrobiology; 2015 Feb; 15(2):169-92. PubMed ID: 25495393 [TBL] [Abstract][Full Text] [Related]
19. Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Breitbart M; Hoare A; Nitti A; Siefert J; Haynes M; Dinsdale E; Edwards R; Souza V; Rohwer F; Hollander D Environ Microbiol; 2009 Jan; 11(1):16-34. PubMed ID: 18764874 [TBL] [Abstract][Full Text] [Related]
20. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Reid RP; Visscher PT; Decho AW; Stolz JF; Bebout BM; Dupraz C; Macintyre IG; Paerl HW; Pinckney JL; Prufert-Bebout L; Steppe TF; DesMarais DJ Nature; 2000 Aug; 406(6799):989-92. PubMed ID: 10984051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]