These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19968466)

  • 1. A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico.
    Melim LA; Liescheidt R; Northup DE; Spilde MN; Boston PJ; Queen JM
    Astrobiology; 2009 Nov; 9(9):907-17. PubMed ID: 19968466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping.
    Tice MM; Quezergue K; Pope MC
    Astrobiology; 2017 Nov; 17(11):1161-1172. PubMed ID: 29135301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbonate organo-mineral micro- and ultrastructures in sub-fossil stromatolites: Marion lake, South Australia.
    Perri E; Tucker ME; Spadafora A
    Geobiology; 2012 Mar; 10(2):105-17. PubMed ID: 22039973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonate fabrics in the modern microbialites of Pavilion Lake: two suites of microfabrics that reflect variation in microbial community morphology, growth habit, and lithification.
    Theisen CH; Sumner DY; Mackey TJ; Lim DS; Brady AL; Slater GF
    Geobiology; 2015 Jul; 13(4):357-72. PubMed ID: 25809931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cave that holds clues to life on Mars.
    Nelson P
    Natl Widl; 1996; 34(5):36-42. PubMed ID: 11542304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.
    Ries JB; Anderson MA; Hill RT
    Geobiology; 2008 Mar; 6(2):106-19. PubMed ID: 18380873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cave biosignature suites: microbes, minerals, and Mars.
    Boston PJ; Spilde MN; Northup DE; Melim LA; Soroka DS; Kleina LG; Lavoie KH; Hose LD; Mallory LM; Dahm CN; Crossey LJ; Schelble RT
    Astrobiology; 2001; 1(1):25-55. PubMed ID: 12448994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars.
    Ivarsson M; Lausmaa J; Lindblom S; Broman C; Holm NG
    Astrobiology; 2008 Dec; 8(6):1139-57. PubMed ID: 19191540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples.
    Potter-McIntyre SL; Williams J; Phillips-Lander C; O'Connell L
    Astrobiology; 2017 Mar; 17(3):216-230. PubMed ID: 28323483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium carbonate precipitation by cave bacteria isolated from Kashmir Cave, Khyber Pakhtunkhwa, Pakistan.
    Jan SU; Zada S; Rafiq M; Khan I; Sajjad W; Khan MA; Hasan F
    Microsc Res Tech; 2022 Jul; 85(7):2514-2525. PubMed ID: 35388567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?
    Grotzinger JP; Knoll AH
    Palaios; 1995 Dec; 10(6):578-96. PubMed ID: 11542266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of biominerals relevant to the search for life on Mars.
    Blanco A; D'Elia M; Licchelli D; Orofino V; Fonti S
    Orig Life Evol Biosph; 2006 Dec; 36(5-6):621-2. PubMed ID: 17120120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology.
    Hofmann BA; Farmer JD; von Blanckenburg F; Fallick AE
    Astrobiology; 2008 Feb; 8(1):87-117. PubMed ID: 18241094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrotron X-ray microanalysis and imaging of synthetic biological calcium carbonate in comparison with archaeological samples originating from the Large cave of Arcy-sur-Cure (28000-24500 BP, Yonne, France).
    Chalmin E; Reiche I
    Microsc Microanal; 2013 Dec; 19(6):1523-34. PubMed ID: 24001921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural study of iron oxide precipitates: implications for the search for biosignatures in the Meridiani hematite concretions, Mars.
    Souza-Egipsy V; Ormö J; Beitler Bowen B; Chan MA; Komatsu G
    Astrobiology; 2006 Aug; 6(4):527-45. PubMed ID: 16916280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial lithification in marine stromatolites and hypersaline mats.
    Dupraz C; Visscher PT
    Trends Microbiol; 2005 Sep; 13(9):429-38. PubMed ID: 16087339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?
    Sumner DY; Grotzinger JP
    Geology; 1996 Feb; 24(2):119-22. PubMed ID: 11539494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and diagenesis of modern marine calcified cyanobacteria.
    Planavsky N; Reid RP; Lyons TW; Myshrall KL; Visscher PT
    Geobiology; 2009 Dec; 7(5):566-76. PubMed ID: 19796131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions.
    Ronholm J; Schumann D; Sapers HM; Izawa M; Applin D; Berg B; Mann P; Vali H; Flemming RL; Cloutis EA; Whyte LG
    Geobiology; 2014 Nov; 12(6):542-56. PubMed ID: 25256888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans.
    Arp G; Reimer A; Reitner J
    Science; 2001 Jun; 292(5522):1701-4. PubMed ID: 11387471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.