These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19968556)

  • 1. Development, comparison, and validation of real-time and conventional PCR tools for the detection of the fungal pathogens causing brown spot and red band needle blights of pine.
    Ioos R; Fabre B; Saurat C; Fourrier C; Frey P; Marçais B
    Phytopathology; 2010 Jan; 100(1):105-14. PubMed ID: 19968556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR.
    Alaei H; Baeyen S; Maes M; Höfte M; Heungens K
    J Microbiol Methods; 2009 Feb; 76(2):136-45. PubMed ID: 18940207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive detection of Fusarium circinatum in pine seed by combining an enrichment procedure with a real-time polymerase chain reaction using dual-labeled probe chemistry.
    Ioos R; Fourrier C; Iancu G; Gordon TR
    Phytopathology; 2009 May; 99(5):582-90. PubMed ID: 19351254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nested polymerase chain reaction-based detection of Dothistroma septosporum, red band needle blight of pine, a tool in support of phytosanitary regimes.
    Langrell SR
    Mol Ecol Resour; 2011 Jul; 11(4):749-52. PubMed ID: 21676203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction.
    Ha Y; Fessehaie A; Ling KS; Wechter WP; Keinath AP; Walcott RR
    Phytopathology; 2009 Jun; 99(6):666-78. PubMed ID: 19453225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.
    Zhang Z; Zhang J; Wang Y; Zheng X
    FEMS Microbiol Lett; 2005 Aug; 249(1):39-47. PubMed ID: 16019161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presymptomatic and quantitative detection of Mycosphaerella graminicola development in wheat using a real-time PCR assay.
    Guo JR; Schnieder F; Verreet JA
    FEMS Microbiol Lett; 2006 Sep; 262(2):223-9. PubMed ID: 16923079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Quantitative PCR in the diagnosis of Leishmania].
    Mortarino M; Franceschi A; Mancianti F; Bazzocchi C; Genchi C; Bandi C
    Parassitologia; 2004 Jun; 46(1-2):163-7. PubMed ID: 15305709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution melting analysis: a new molecular approach for the early detection of Diplodia pinea in Austrian pine.
    Luchi N; Pratesi N; Simi L; Pazzagli M; Capretti P; Scala A; Slippers B; Pinzani P
    Fungal Biol; 2011 Aug; 115(8):715-23. PubMed ID: 21802051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal molecular diagnostics: a mini review.
    Atkins SD; Clark IM
    J Appl Genet; 2004; 45(1):3-15. PubMed ID: 14960763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is the emergence of Dothistroma needle blight of pine in France caused by the cryptic species Dothistroma pini?
    Fabre B; Ioos R; Piou D; Marçais B
    Phytopathology; 2012 Jan; 102(1):47-54. PubMed ID: 22165983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid identification and detection of pine pathogenic fungi associated with mountain pine beetles by padlock probes.
    Tsui CK; Wang B; Khadempour L; Alamouti SM; Bohlmann J; Murray BW; Hamelin RC
    J Microbiol Methods; 2010 Oct; 83(1):26-33. PubMed ID: 20650291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular diagnostics for fungal plant pathogens.
    McCartney HA; Foster SJ; Fraaije BA; Ward E
    Pest Manag Sci; 2003 Feb; 59(2):129-42. PubMed ID: 12587866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR.
    Castrillo LA; Thomsen L; Juneja P; Hajek AE
    Mycol Res; 2007 Mar; 111(Pt 3):324-31. PubMed ID: 17363233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-gel based techniques for plant pathogen genotyping.
    Abd-Elsalam KA
    Acta Microbiol Pol; 2003; 52(4):329-41. PubMed ID: 15095920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomarker for the identification of four Phaeoacremonium species using the beta-tubulin gene as the target sequence.
    Aroca A; Raposo R; Lunello P
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):1131-40. PubMed ID: 18719899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Pyrenophora teres in infected barley leaves using real-time PCR.
    Leisova L; Minarikova V; Kucera L; Ovesna J
    J Microbiol Methods; 2006 Dec; 67(3):446-55. PubMed ID: 16806544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a real-time multiplex PCR assay for detection of viral pathogens of penaeid shrimp.
    Xie Z; Xie L; Pang Y; Lu Z; Xie Z; Sun J; Deng X; Liu J; Tang X; Khan M
    Arch Virol; 2008; 153(12):2245-51. PubMed ID: 19018451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Fusarium spp. and Microdochium spp. PCR assays to evaluate seed treatments for the control of Fusarium seedling blight of wheat.
    Glynn NC; Ray R; Edwards SG; Hare MC; Parry DW; Barnett CJ; Beck JJ
    J Appl Microbiol; 2007 Jun; 102(6):1645-53. PubMed ID: 17578430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of interference to conventional and real-time PCR for detection and quantification of fungi in dust.
    Keswani J; Kashon ML; Chen BT
    J Environ Monit; 2005 Apr; 7(4):311-8. PubMed ID: 15798797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.