BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19968788)

  • 1. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans.
    Vieira N; Casal M; Johansson B; MacCallum DM; Brown AJ; Paiva S
    Mol Microbiol; 2010 Mar; 75(6):1337-54. PubMed ID: 19968788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of Candida albicans biofilm in the presence of lactate.
    Alves R; Mota S; Silva S; F Rodrigues C; P Brown AJ; Henriques M; Casal M; Paiva S
    Biofouling; 2017 Nov; 33(10):943-954. PubMed ID: 29094611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans.
    Enjalbert B; MacCallum DM; Odds FC; Brown AJ
    Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.
    Williams RB; Lorenz MC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids.
    Danhof HA; Vylkova S; Vesely EM; Ford AE; Gonzalez-Garay M; Lorenz MC
    mBio; 2016 Nov; 7(6):. PubMed ID: 27935835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Profiling of Candida auris Isolates Reveals Clade-Specific Metabolic Differences.
    Brandt P; Mirhakkak MH; Wagner L; Driesch D; Möslinger A; Fänder P; Schäuble S; Panagiotou G; Vylkova S
    Microbiol Spectr; 2023 Jun; 11(3):e0049823. PubMed ID: 37097196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans.
    Sandai D; Yin Z; Selway L; Stead D; Walker J; Leach MD; Bohovych I; Ene IV; Kastora S; Budge S; Munro CA; Odds FC; Gow NA; Brown AJ
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans.
    Piekarska K; Mol E; van den Berg M; Hardy G; van den Burg J; van Roermund C; MacCallum D; Odds F; Distel B
    Eukaryot Cell; 2006 Nov; 5(11):1847-56. PubMed ID: 16963628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of Both Pathogenic and Nonpathogenic CUG Clade
    Pountain AW; Collette JR; Farrell WM; Lorenz MC
    mBio; 2021 Dec; 12(6):e0331721. PubMed ID: 34903044
    [No Abstract]   [Full Text] [Related]  

  • 10. A family of oligopeptide transporters is required for growth of Candida albicans on proteins.
    Reuss O; Morschhäuser J
    Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavodoxin-Like Proteins Protect Candida albicans from Oxidative Stress and Promote Virulence.
    Li L; Naseem S; Sharma S; Konopka JB
    PLoS Pathog; 2015 Sep; 11(9):e1005147. PubMed ID: 26325183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-affinity iron permease essential for Candida albicans virulence.
    Ramanan N; Wang Y
    Science; 2000 May; 288(5468):1062-4. PubMed ID: 10807578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.
    Makuc J; Paiva S; Schauen M; Krämer R; André B; Casal M; Leão C; Boles E
    Yeast; 2001 Sep; 18(12):1131-43. PubMed ID: 11536335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxylic Acid Transporters in
    Alves R; Sousa-Silva M; Vieira D; Soares P; Chebaro Y; Lorenz MC; Casal M; Soares-Silva I; Paiva S
    mBio; 2020 May; 11(3):. PubMed ID: 32398310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of different peptide transporters in nutrient acquisition in Candida albicans.
    Dunkel N; Hertlein T; Franz R; Reuß O; Sasse C; Schäfer T; Ohlsen K; Morschhäuser J
    Eukaryot Cell; 2013 Apr; 12(4):520-8. PubMed ID: 23376942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The disruption of JEN1 from Candida albicans impairs the transport of lactate.
    Soares-Silva I; Paiva S; Kötter P; Entian KD; Casal M
    Mol Membr Biol; 2004; 21(6):403-11. PubMed ID: 15764370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon metabolism snapshot by ddPCR during the early step of Candida albicans phagocytosis by macrophages.
    Laurian R; Jacot-des-Combes C; Bastian F; Dementhon K; Cotton P
    Pathog Dis; 2020 Feb; 78(1):. PubMed ID: 32129841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of Kluyveromyces lactis carboxylic acids permeases: heterologous expression of KlJEN1 and KlJEN2 genes.
    Queirós O; Pereira L; Paiva S; Moradas-Ferreira P; Casal M
    Curr Genet; 2007 Mar; 51(3):161-9. PubMed ID: 17186243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential activation of a Candida albicans virulence gene family during infection.
    Staib P; Kretschmar M; Nichterlein T; Hof H; Morschhäuser J
    Proc Natl Acad Sci U S A; 2000 May; 97(11):6102-7. PubMed ID: 10811913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.