BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19968911)

  • 1. Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster.
    Yamamoto A; Anholt RR; MacKay TF
    Genet Res (Camb); 2009 Dec; 91(6):373-82. PubMed ID: 19968911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive epistasis for olfactory behaviour, sleep and waking activity in Drosophila melanogaster.
    Swarup S; Harbison ST; Hahn LE; Morozova TV; Yamamoto A; Mackay TF; Anholt RR
    Genet Res (Camb); 2012 Feb; 94(1):9-20. PubMed ID: 22353245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster.
    Yamamoto A; Zwarts L; Callaerts P; Norga K; Mackay TF; Anholt RR
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12393-8. PubMed ID: 18713854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polygenic mutation in Drosophila melanogaster: Mapping spontaneous mutations affecting sensory bristle number.
    Mackay TF; Lyman RF; Lawrence F
    Genetics; 2005 Aug; 170(4):1723-35. PubMed ID: 15944368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epistasis dominates the genetic architecture of Drosophila quantitative traits.
    Huang W; Richards S; Carbone MA; Zhu D; Anholt RR; Ayroles JF; Duncan L; Jordan KW; Lawrence F; Magwire MM; Warner CB; Blankenburg K; Han Y; Javaid M; Jayaseelan J; Jhangiani SN; Muzny D; Ongeri F; Perales L; Wu YQ; Zhang Y; Zou X; Stone EA; Gibbs RA; Mackay TF
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15553-9. PubMed ID: 22949659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex genetic architecture of Drosophila aggressive behavior.
    Zwarts L; Magwire MM; Carbone MA; Versteven M; Herteleer L; Anholt RR; Callaerts P; Mackay TF
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17070-5. PubMed ID: 21949384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior.
    He X; Zhou S; St Armour GE; Mackay TF; Anholt RR
    Genes Brain Behav; 2016 Feb; 15(2):280-90. PubMed ID: 26678546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epistasis in polygenic traits and the evolution of genetic architecture under stabilizing selection.
    Hermisson J; Hansen TF; Wagner GP
    Am Nat; 2003 May; 161(5):708-34. PubMed ID: 12858280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epistasis for head morphology in Drosophila melanogaster.
    Özsoy ED; Yılmaz M; Patlar B; Emecen G; Durmaz E; Magwire MM; Zhou S; Huang W; Anholt RRH; Mackay TFC
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epistatic interactions between smell-impaired loci in Drosophila melanogaster.
    Fedorowicz GM; Fry JD; Anholt RR; Mackay TF
    Genetics; 1998 Apr; 148(4):1885-91. PubMed ID: 9560402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci.
    Mackay TF; Fry JD
    Genetics; 1996 Oct; 144(2):671-88. PubMed ID: 8889529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unifying genetic canalization, genetic constraint, and genotype-by-environment interaction: QTL by genomic background by environment interaction of flowering time in Boechera stricta.
    Lee CR; Anderson JT; Mitchell-Olds T
    PLoS Genet; 2014 Oct; 10(10):e1004727. PubMed ID: 25340779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL-based evidence for the role of epistasis in evolution.
    Malmberg RL; Mauricio R
    Genet Res; 2005 Oct; 86(2):89-95. PubMed ID: 16356282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic consequences of background effects on scalloped mutant expressivity in the wing of Drosophila melanogaster.
    Dworkin I; Kennerly E; Tack D; Hutchinson J; Brown J; Mahaffey J; Gibson G
    Genetics; 2009 Mar; 181(3):1065-76. PubMed ID: 19064709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The conditional nature of genetic interactions: the consequences of wild-type backgrounds on mutational interactions in a genome-wide modifier screen.
    Chari S; Dworkin I
    PLoS Genet; 2013; 9(8):e1003661. PubMed ID: 23935530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes and consequences of genetic background effects illuminated by integrative genomic analysis.
    Chandler CH; Chari S; Tack D; Dworkin I
    Genetics; 2014 Apr; 196(4):1321-36. PubMed ID: 24504186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection, epistasis, and parent-of-origin effects on deleterious mutations across environments in Drosophila melanogaster.
    Wang AD; Sharp NP; Spencer CC; Tedman-Aucoin K; Agrawal AF
    Am Nat; 2009 Dec; 174(6):863-74. PubMed ID: 19852616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of synergistic epistasis on the inbreeding load.
    Charlesworth B
    Genet Res; 1998 Feb; 71(1):85-9. PubMed ID: 9674385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations and quantitative genetic variation: lessons from Drosophila.
    Mackay TF
    Philos Trans R Soc Lond B Biol Sci; 2010 Apr; 365(1544):1229-39. PubMed ID: 20308098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative trait loci for aggressive behavior in Drosophila melanogaster.
    Edwards AC; Mackay TF
    Genetics; 2009 Jul; 182(3):889-97. PubMed ID: 19414563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.